Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular tomography with compressive sensing based preconditioning,” Biomed. Opt. Express 6(12), 4887–4898 (2015).

[Crossref]
[PubMed]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40(3), 431–434 (2015).

[Crossref]
[PubMed]

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).

[Crossref]
[PubMed]

A. Jin, B. Yazici, and V. Ntziachristos, “Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing,” IEEE Trans. Med. Imag. 23(6), 2609–2624 (2014).

[Crossref]

J. Shi, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion,” J. Opt. Soc. Am. A 30(3), 437–447 (2013).

[Crossref]

A. K. Jha, E. Clarkson, M. A. Kupinski, and H. H. Barrett, “Joint reconstruction of activity and attenuation map using LM SPECT emission data,” Medical Imaging 2013: Physics of Medical Imaging 8668, 86681W (2013).

[Crossref]

D. Ma, P. Wolf, A. V. Clough, and T. G. Schmidt, “The performance of MLEM for dynamic imaging from simulated few-view, multi-pinhole SPECT,” IEEE Trans. Nucl. Sci. 60(1), 115–123 (2013).

[Crossref]

A. Jin, B. Yazici, A. Ale, and V. Ntziachristos, “Preconditioning of the fluorescence diffuse optical tomography sensing matrix based on compressive sensing,” Opt. Lett. 37(20), 4326–4328 (2012).

[Crossref]
[PubMed]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint ℓ1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459 (2012).

[Crossref]
[PubMed]

O. Lehtikangas, T. Tarvainen, and A. D. Kim, “Modeling boundary measurements of scattered light using the corrected diffusion approximation,” Biomed. Opt. Express 3(3), 552–571 (2012).

[Crossref]
[PubMed]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[Crossref]

A. K Jha, M. A Kupinski, H. H Barrett, E. Clarkson, and J. H Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29(9), 1885–1899 (2012).

[Crossref]

PS. Mohan, T. Tarvainen, M. Schweiger, A. Pulkkinen, and S. R Arridge, “Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements,” J. Comput. Phys. 230(19), 7364–7383 (2011).

[Crossref]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imag. 30(9), 1591–1604 (2011).

[Crossref]

O. Lee, J. Kim, Y. Bresler, and J. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30(5), 1129–1142 (2011).

[Crossref]

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3(2), 229–274 (2011).

[Crossref]
[PubMed]

L. Zhou and B. Yazici, “Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography in the presence of measurement noise,” IEEE Trans. Image Process. 20(4), 1049–1111 (2011).

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18(8), 8630–8646 (2010).

[Crossref]

L. Cao and J. Peter, “Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system,” Phys. Med. Biol. 55(9), 2693 (2010).

[Crossref]
[PubMed]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

Q. Fang and D. A. Boas, “Monte carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).

[Crossref]

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51(1), 34–81 (2009).

[Crossref]

F. Leblond, H. Dehghani, D. Kepshire, and B. W Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26(6), 1444–1457 (2009).

[Crossref]

SB Raymond, ATN Kumar, DA Boas, and BJ Bacskai, “Optimal parameters for near infrared fluorescence imaging of amyloid plaques in alzheimer’s disease mouse models,” Phys. Med. Biol. 54(20), 6201 (2009).

[Crossref]
[PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921 (2008).

[Crossref]
[PubMed]

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).

[Crossref]
[PubMed]

J. Qi and R. M. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51(15), R541 (2006).

[Crossref]
[PubMed]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8,1–33 (2006).

[Crossref]
[PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225 (2005).

[Crossref]
[PubMed]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R Arridge, and J. P Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913 (2005).

[Crossref]
[PubMed]

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imag. Biol. 6(3), 149–159 (2004).

[Crossref]

J. H. Chang, J. MM Anderson, and J. R Votaw, “Regularized image reconstruction algorithms for Positron Emission Tomography,” IEEE Trans. Med. Imag. 23(9), 1165–1175 (2004).

[Crossref]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).

[Crossref]
[PubMed]

R. M. Lewitt and S. Matej, “Overview of methods for image reconstruction from projections in emission computed tomography,” Proc. IEEE 91(10), 1588–1611 (2003).

[Crossref]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).

[Crossref]
[PubMed]

G. Kontaxakis and L. G Strauss, “Maximum likelihood algorithms for image reconstruction in Positron Emission Tomography,” Radionuclides Oncol. 8, 73–106 (1998)

J. Llacer, E. Veklerov, K. J. Coakley, E. J. Hoffman, and J. Nunez, “Statistical analysis of maximum likelihood estimator images of human brain FDG PET studies,” IEEE Trans. Med. Imag. 12(2), 215–231 (1993).

[Crossref]

K. Lange, M. Bahn, and R. Little, “A theoretical study of some maximum likelihood algorithms for emission and transmission tomography,” IEEE Trans. Med. Imag. 6(2), 106–114 (1987).

[Crossref]

Y. Vardi, L. Shepp, and L. Kaufman, “A statistical model for positron emission tomography,” J. Am. Stat. Assoc. 80(389), 8–20 (1985).

[Crossref]

L. Adhikari, D. Zhu, C. Li, and R. F. Marcia, “Nonconvex reconstruction for low-dimensional fluorescence molecular tomographic poisson observations,” 2015 IEEE International Conference on Image Processing (ICIP), 2404–2408 (2015).

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint ℓ1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459 (2012).

[Crossref]
[PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921 (2008).

[Crossref]
[PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225 (2005).

[Crossref]
[PubMed]

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

J. H. Chang, J. MM Anderson, and J. R Votaw, “Regularized image reconstruction algorithms for Positron Emission Tomography,” IEEE Trans. Med. Imag. 23(9), 1165–1175 (2004).

[Crossref]

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).

[Crossref]
[PubMed]

PS. Mohan, T. Tarvainen, M. Schweiger, A. Pulkkinen, and S. R Arridge, “Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements,” J. Comput. Phys. 230(19), 7364–7383 (2011).

[Crossref]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R Arridge, and J. P Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913 (2005).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).

[Crossref]

SB Raymond, ATN Kumar, DA Boas, and BJ Bacskai, “Optimal parameters for near infrared fluorescence imaging of amyloid plaques in alzheimer’s disease mouse models,” Phys. Med. Biol. 54(20), 6201 (2009).

[Crossref]
[PubMed]

K. Lange, M. Bahn, and R. Little, “A theoretical study of some maximum likelihood algorithms for emission and transmission tomography,” IEEE Trans. Med. Imag. 6(2), 106–114 (1987).

[Crossref]

J. Shi, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion,” J. Opt. Soc. Am. A 30(3), 437–447 (2013).

[Crossref]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imag. 30(9), 1591–1604 (2011).

[Crossref]

A. K. Jha, E. Clarkson, M. A. Kupinski, and H. H. Barrett, “Joint reconstruction of activity and attenuation map using LM SPECT emission data,” Medical Imaging 2013: Physics of Medical Imaging 8668, 86681W (2013).

[Crossref]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[Crossref]

H. H. Barrett and K. J. Myers, Foundations of Image Science, 1 ed. (Wiley, 2004).

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imag. Biol. 6(3), 149–159 (2004).

[Crossref]

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

SB Raymond, ATN Kumar, DA Boas, and BJ Bacskai, “Optimal parameters for near infrared fluorescence imaging of amyloid plaques in alzheimer’s disease mouse models,” Phys. Med. Biol. 54(20), 6201 (2009).

[Crossref]
[PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921 (2008).

[Crossref]
[PubMed]

O. Lee, J. Kim, Y. Bresler, and J. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30(5), 1129–1142 (2011).

[Crossref]

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51(1), 34–81 (2009).

[Crossref]

L. Cao and J. Peter, “Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system,” Phys. Med. Biol. 55(9), 2693 (2010).

[Crossref]
[PubMed]

J. H. Chang, J. MM Anderson, and J. R Votaw, “Regularized image reconstruction algorithms for Positron Emission Tomography,” IEEE Trans. Med. Imag. 23(9), 1165–1175 (2004).

[Crossref]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225 (2005).

[Crossref]
[PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921 (2008).

[Crossref]
[PubMed]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint ℓ1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459 (2012).

[Crossref]
[PubMed]

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

A. K. Jha, E. Clarkson, M. A. Kupinski, and H. H. Barrett, “Joint reconstruction of activity and attenuation map using LM SPECT emission data,” Medical Imaging 2013: Physics of Medical Imaging 8668, 86681W (2013).

[Crossref]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[Crossref]

A. K Jha, M. A Kupinski, H. H Barrett, E. Clarkson, and J. H Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29(9), 1885–1899 (2012).

[Crossref]

D. Ma, P. Wolf, A. V. Clough, and T. G. Schmidt, “The performance of MLEM for dynamic imaging from simulated few-view, multi-pinhole SPECT,” IEEE Trans. Nucl. Sci. 60(1), 115–123 (2013).

[Crossref]

J. Llacer, E. Veklerov, K. J. Coakley, E. J. Hoffman, and J. Nunez, “Statistical analysis of maximum likelihood estimator images of human brain FDG PET studies,” IEEE Trans. Med. Imag. 12(2), 215–231 (1993).

[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).

[Crossref]
[PubMed]

M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, “Image reconstruction for bioluminescence tomography from partial measurement,” Opt. Express 15(18), 11095–11116 (2007).

[Crossref]
[PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921 (2008).

[Crossref]
[PubMed]

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51(1), 34–81 (2009).

[Crossref]

Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint ℓ1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459 (2012).

[Crossref]
[PubMed]

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51(1), 34–81 (2009).

[Crossref]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).

[Crossref]
[PubMed]

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imag. Biol. 6(3), 149–159 (2004).

[Crossref]

J. Llacer, E. Veklerov, K. J. Coakley, E. J. Hoffman, and J. Nunez, “Statistical analysis of maximum likelihood estimator images of human brain FDG PET studies,” IEEE Trans. Med. Imag. 12(2), 215–231 (1993).

[Crossref]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40(3), 431–434 (2015).

[Crossref]
[PubMed]

R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular tomography with compressive sensing based preconditioning,” Biomed. Opt. Express 6(12), 4887–4898 (2015).

[Crossref]
[PubMed]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).

[Crossref]
[PubMed]

A. K. Jha, Y. Zhu, S. Arridge, D. F. Wong, and A. Rahmim, “Incorporating reflection boundary conditions in the Neumann series radiative transport equation: application to photon propagation and reconstruction in diffuse optical imaging,” Biomed. Opt. Express 9(4), 1389–1407 (2018).

[Crossref]
[PubMed]

Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

A. K. Jha, E. Clarkson, M. A. Kupinski, and H. H. Barrett, “Joint reconstruction of activity and attenuation map using LM SPECT emission data,” Medical Imaging 2013: Physics of Medical Imaging 8668, 86681W (2013).

[Crossref]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[Crossref]

A. K. Jha, “Retrieving information from scattered photons in medical imaging,” Ph.D dissertation, The University of Arizona, 2013.

Y. Zhu, A. K. Jha, D. Wong, and A. Rahmim, “Improved sparse reconstruction for fluorescence molecular tomography with poisson noise modeling,” Biophotonics Congress: Biomedical Optics Congress 2018, JTu3A.51 (2018).

A. Jin, B. Yazici, and V. Ntziachristos, “Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing,” IEEE Trans. Med. Imag. 23(6), 2609–2624 (2014).

[Crossref]

A. Jin, B. Yazici, A. Ale, and V. Ntziachristos, “Preconditioning of the fluorescence diffuse optical tomography sensing matrix based on compressive sensing,” Opt. Lett. 37(20), 4326–4328 (2012).

[Crossref]
[PubMed]

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imag. Biol. 6(3), 149–159 (2004).

[Crossref]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R Arridge, and J. P Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913 (2005).

[Crossref]
[PubMed]

Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

Y. Vardi, L. Shepp, and L. Kaufman, “A statistical model for positron emission tomography,” J. Am. Stat. Assoc. 80(389), 8–20 (1985).

[Crossref]

O. Lee, J. Kim, Y. Bresler, and J. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30(5), 1129–1142 (2011).

[Crossref]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R Arridge, and J. P Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913 (2005).

[Crossref]
[PubMed]

G. Kontaxakis and L. G Strauss, “Maximum likelihood algorithms for image reconstruction in Positron Emission Tomography,” Radionuclides Oncol. 8, 73–106 (1998)

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

SB Raymond, ATN Kumar, DA Boas, and BJ Bacskai, “Optimal parameters for near infrared fluorescence imaging of amyloid plaques in alzheimer’s disease mouse models,” Phys. Med. Biol. 54(20), 6201 (2009).

[Crossref]
[PubMed]

A. K. Jha, E. Clarkson, M. A. Kupinski, and H. H. Barrett, “Joint reconstruction of activity and attenuation map using LM SPECT emission data,” Medical Imaging 2013: Physics of Medical Imaging 8668, 86681W (2013).

[Crossref]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[Crossref]

K. Lange, M. Bahn, and R. Little, “A theoretical study of some maximum likelihood algorithms for emission and transmission tomography,” IEEE Trans. Med. Imag. 6(2), 106–114 (1987).

[Crossref]

Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint ℓ1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459 (2012).

[Crossref]
[PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921 (2008).

[Crossref]
[PubMed]

J. Qi and R. M. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51(15), R541 (2006).

[Crossref]
[PubMed]

O. Lee, J. Kim, Y. Bresler, and J. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30(5), 1129–1142 (2011).

[Crossref]

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).

[Crossref]
[PubMed]

R. M. Lewitt and S. Matej, “Overview of methods for image reconstruction from projections in emission computed tomography,” Proc. IEEE 91(10), 1588–1611 (2003).

[Crossref]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint ℓ1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459 (2012).

[Crossref]
[PubMed]

L. Adhikari, D. Zhu, C. Li, and R. F. Marcia, “Nonconvex reconstruction for low-dimensional fluorescence molecular tomographic poisson observations,” 2015 IEEE International Conference on Image Processing (ICIP), 2404–2408 (2015).

K. Lange, M. Bahn, and R. Little, “A theoretical study of some maximum likelihood algorithms for emission and transmission tomography,” IEEE Trans. Med. Imag. 6(2), 106–114 (1987).

[Crossref]

J. Shi, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion,” J. Opt. Soc. Am. A 30(3), 437–447 (2013).

[Crossref]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imag. 30(9), 1591–1604 (2011).

[Crossref]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imag. 30(9), 1591–1604 (2011).

[Crossref]

J. Llacer, E. Veklerov, K. J. Coakley, E. J. Hoffman, and J. Nunez, “Statistical analysis of maximum likelihood estimator images of human brain FDG PET studies,” IEEE Trans. Med. Imag. 12(2), 215–231 (1993).

[Crossref]

D. Ma, P. Wolf, A. V. Clough, and T. G. Schmidt, “The performance of MLEM for dynamic imaging from simulated few-view, multi-pinhole SPECT,” IEEE Trans. Nucl. Sci. 60(1), 115–123 (2013).

[Crossref]

L. Adhikari, D. Zhu, C. Li, and R. F. Marcia, “Nonconvex reconstruction for low-dimensional fluorescence molecular tomographic poisson observations,” 2015 IEEE International Conference on Image Processing (ICIP), 2404–2408 (2015).

R. M. Lewitt and S. Matej, “Overview of methods for image reconstruction from projections in emission computed tomography,” Proc. IEEE 91(10), 1588–1611 (2003).

[Crossref]

PS. Mohan, T. Tarvainen, M. Schweiger, A. Pulkkinen, and S. R Arridge, “Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements,” J. Comput. Phys. 230(19), 7364–7383 (2011).

[Crossref]

H. H. Barrett and K. J. Myers, Foundations of Image Science, 1 ed. (Wiley, 2004).

A. Jin, B. Yazici, and V. Ntziachristos, “Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing,” IEEE Trans. Med. Imag. 23(6), 2609–2624 (2014).

[Crossref]

A. Jin, B. Yazici, A. Ale, and V. Ntziachristos, “Preconditioning of the fluorescence diffuse optical tomography sensing matrix based on compressive sensing,” Opt. Lett. 37(20), 4326–4328 (2012).

[Crossref]
[PubMed]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8,1–33 (2006).

[Crossref]
[PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).

[Crossref]
[PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).

[Crossref]

J. Llacer, E. Veklerov, K. J. Coakley, E. J. Hoffman, and J. Nunez, “Statistical analysis of maximum likelihood estimator images of human brain FDG PET studies,” IEEE Trans. Med. Imag. 12(2), 215–231 (1993).

[Crossref]

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

L. Cao and J. Peter, “Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system,” Phys. Med. Biol. 55(9), 2693 (2010).

[Crossref]
[PubMed]

R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular tomography with compressive sensing based preconditioning,” Biomed. Opt. Express 6(12), 4887–4898 (2015).

[Crossref]
[PubMed]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40(3), 431–434 (2015).

[Crossref]
[PubMed]

PS. Mohan, T. Tarvainen, M. Schweiger, A. Pulkkinen, and S. R Arridge, “Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements,” J. Comput. Phys. 230(19), 7364–7383 (2011).

[Crossref]

J. Qi and R. M. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51(15), R541 (2006).

[Crossref]
[PubMed]

A. K. Jha, Y. Zhu, S. Arridge, D. F. Wong, and A. Rahmim, “Incorporating reflection boundary conditions in the Neumann series radiative transport equation: application to photon propagation and reconstruction in diffuse optical imaging,” Biomed. Opt. Express 9(4), 1389–1407 (2018).

[Crossref]
[PubMed]

Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

Y. Zhu, A. K. Jha, D. Wong, and A. Rahmim, “Improved sparse reconstruction for fluorescence molecular tomography with poisson noise modeling,” Biophotonics Congress: Biomedical Optics Congress 2018, JTu3A.51 (2018).

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225 (2005).

[Crossref]
[PubMed]

SB Raymond, ATN Kumar, DA Boas, and BJ Bacskai, “Optimal parameters for near infrared fluorescence imaging of amyloid plaques in alzheimer’s disease mouse models,” Phys. Med. Biol. 54(20), 6201 (2009).

[Crossref]
[PubMed]

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).

[Crossref]
[PubMed]

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3(2), 229–274 (2011).

[Crossref]
[PubMed]

Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3(2), 229–274 (2011).

[Crossref]
[PubMed]

D. Ma, P. Wolf, A. V. Clough, and T. G. Schmidt, “The performance of MLEM for dynamic imaging from simulated few-view, multi-pinhole SPECT,” IEEE Trans. Nucl. Sci. 60(1), 115–123 (2013).

[Crossref]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).

[Crossref]

PS. Mohan, T. Tarvainen, M. Schweiger, A. Pulkkinen, and S. R Arridge, “Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements,” J. Comput. Phys. 230(19), 7364–7383 (2011).

[Crossref]

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imag. Biol. 6(3), 149–159 (2004).

[Crossref]

Y. Vardi, L. Shepp, and L. Kaufman, “A statistical model for positron emission tomography,” J. Am. Stat. Assoc. 80(389), 8–20 (1985).

[Crossref]

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).

[Crossref]
[PubMed]

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).

[Crossref]
[PubMed]

G. Kontaxakis and L. G Strauss, “Maximum likelihood algorithms for image reconstruction in Positron Emission Tomography,” Radionuclides Oncol. 8, 73–106 (1998)

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3(2), 229–274 (2011).

[Crossref]
[PubMed]

O. Lehtikangas, T. Tarvainen, and A. D. Kim, “Modeling boundary measurements of scattered light using the corrected diffusion approximation,” Biomed. Opt. Express 3(3), 552–571 (2012).

[Crossref]
[PubMed]

PS. Mohan, T. Tarvainen, M. Schweiger, A. Pulkkinen, and S. R Arridge, “Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements,” J. Comput. Phys. 230(19), 7364–7383 (2011).

[Crossref]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R Arridge, and J. P Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913 (2005).

[Crossref]
[PubMed]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18(8), 8630–8646 (2010).

[Crossref]

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imag. Biol. 6(3), 149–159 (2004).

[Crossref]

Y. Vardi, L. Shepp, and L. Kaufman, “A statistical model for positron emission tomography,” J. Am. Stat. Assoc. 80(389), 8–20 (1985).

[Crossref]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R Arridge, and J. P Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913 (2005).

[Crossref]
[PubMed]

J. Llacer, E. Veklerov, K. J. Coakley, E. J. Hoffman, and J. Nunez, “Statistical analysis of maximum likelihood estimator images of human brain FDG PET studies,” IEEE Trans. Med. Imag. 12(2), 215–231 (1993).

[Crossref]

J. H. Chang, J. MM Anderson, and J. R Votaw, “Regularized image reconstruction algorithms for Positron Emission Tomography,” IEEE Trans. Med. Imag. 23(9), 1165–1175 (2004).

[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).

[Crossref]
[PubMed]

M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, “Image reconstruction for bioluminescence tomography from partial measurement,” Opt. Express 15(18), 11095–11116 (2007).

[Crossref]
[PubMed]

D. Ma, P. Wolf, A. V. Clough, and T. G. Schmidt, “The performance of MLEM for dynamic imaging from simulated few-view, multi-pinhole SPECT,” IEEE Trans. Nucl. Sci. 60(1), 115–123 (2013).

[Crossref]

Y. Zhu, A. K. Jha, D. Wong, and A. Rahmim, “Improved sparse reconstruction for fluorescence molecular tomography with poisson noise modeling,” Biophotonics Congress: Biomedical Optics Congress 2018, JTu3A.51 (2018).

A. K. Jha, Y. Zhu, S. Arridge, D. F. Wong, and A. Rahmim, “Incorporating reflection boundary conditions in the Neumann series radiative transport equation: application to photon propagation and reconstruction in diffuse optical imaging,” Biomed. Opt. Express 9(4), 1389–1407 (2018).

[Crossref]
[PubMed]

Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40(3), 431–434 (2015).

[Crossref]
[PubMed]

R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular tomography with compressive sensing based preconditioning,” Biomed. Opt. Express 6(12), 4887–4898 (2015).

[Crossref]
[PubMed]

A. Jin, B. Yazici, and V. Ntziachristos, “Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing,” IEEE Trans. Med. Imag. 23(6), 2609–2624 (2014).

[Crossref]

A. Jin, B. Yazici, A. Ale, and V. Ntziachristos, “Preconditioning of the fluorescence diffuse optical tomography sensing matrix based on compressive sensing,” Opt. Lett. 37(20), 4326–4328 (2012).

[Crossref]
[PubMed]

L. Zhou and B. Yazici, “Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography in the presence of measurement noise,” IEEE Trans. Image Process. 20(4), 1049–1111 (2011).

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

O. Lee, J. Kim, Y. Bresler, and J. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30(5), 1129–1142 (2011).

[Crossref]

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

J. Shi, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion,” J. Opt. Soc. Am. A 30(3), 437–447 (2013).

[Crossref]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18(8), 8630–8646 (2010).

[Crossref]

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imag. 30(9), 1591–1604 (2011).

[Crossref]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40(3), 431–434 (2015).

[Crossref]
[PubMed]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).

[Crossref]
[PubMed]

L. Zhou and B. Yazici, “Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography in the presence of measurement noise,” IEEE Trans. Image Process. 20(4), 1049–1111 (2011).

L. Adhikari, D. Zhu, C. Li, and R. F. Marcia, “Nonconvex reconstruction for low-dimensional fluorescence molecular tomographic poisson observations,” 2015 IEEE International Conference on Image Processing (ICIP), 2404–2408 (2015).

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

A. K. Jha, Y. Zhu, S. Arridge, D. F. Wong, and A. Rahmim, “Incorporating reflection boundary conditions in the Neumann series radiative transport equation: application to photon propagation and reconstruction in diffuse optical imaging,” Biomed. Opt. Express 9(4), 1389–1407 (2018).

[Crossref]
[PubMed]

Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

Y. Zhu, A. K. Jha, D. Wong, and A. Rahmim, “Improved sparse reconstruction for fluorescence molecular tomography with poisson noise modeling,” Biophotonics Congress: Biomedical Optics Congress 2018, JTu3A.51 (2018).

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8,1–33 (2006).

[Crossref]
[PubMed]

J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).

[Crossref]
[PubMed]

R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular tomography with compressive sensing based preconditioning,” Biomed. Opt. Express 6(12), 4887–4898 (2015).

[Crossref]
[PubMed]

O. Lehtikangas, T. Tarvainen, and A. D. Kim, “Modeling boundary measurements of scattered light using the corrected diffusion approximation,” Biomed. Opt. Express 3(3), 552–571 (2012).

[Crossref]
[PubMed]

A. K. Jha, Y. Zhu, S. Arridge, D. F. Wong, and A. Rahmim, “Incorporating reflection boundary conditions in the Neumann series radiative transport equation: application to photon propagation and reconstruction in diffuse optical imaging,” Biomed. Opt. Express 9(4), 1389–1407 (2018).

[Crossref]
[PubMed]

L. Zhou and B. Yazici, “Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography in the presence of measurement noise,” IEEE Trans. Image Process. 20(4), 1049–1111 (2011).

O. Lee, J. Kim, Y. Bresler, and J. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30(5), 1129–1142 (2011).

[Crossref]

K. Lange, M. Bahn, and R. Little, “A theoretical study of some maximum likelihood algorithms for emission and transmission tomography,” IEEE Trans. Med. Imag. 6(2), 106–114 (1987).

[Crossref]

J. Llacer, E. Veklerov, K. J. Coakley, E. J. Hoffman, and J. Nunez, “Statistical analysis of maximum likelihood estimator images of human brain FDG PET studies,” IEEE Trans. Med. Imag. 12(2), 215–231 (1993).

[Crossref]

A. Jin, B. Yazici, and V. Ntziachristos, “Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing,” IEEE Trans. Med. Imag. 23(6), 2609–2624 (2014).

[Crossref]

J. H. Chang, J. MM Anderson, and J. R Votaw, “Regularized image reconstruction algorithms for Positron Emission Tomography,” IEEE Trans. Med. Imag. 23(9), 1165–1175 (2004).

[Crossref]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imag. 30(9), 1591–1604 (2011).

[Crossref]

D. Ma, P. Wolf, A. V. Clough, and T. G. Schmidt, “The performance of MLEM for dynamic imaging from simulated few-view, multi-pinhole SPECT,” IEEE Trans. Nucl. Sci. 60(1), 115–123 (2013).

[Crossref]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).

[Crossref]

Y. Vardi, L. Shepp, and L. Kaufman, “A statistical model for positron emission tomography,” J. Am. Stat. Assoc. 80(389), 8–20 (1985).

[Crossref]

N. C Biswal, A. Aguirre, Y. Xu, S. Zanganeh, Q. Zhu, C. Pavlik, M. B Smith, L. T Kuhn, and K. P Claffey, “Imaging tumor hypoxia by near-infrared fluorescence tomography,” J. Biomed. Opt. 16(6), 066009 (2011).

[Crossref]
[PubMed]

PS. Mohan, T. Tarvainen, M. Schweiger, A. Pulkkinen, and S. R Arridge, “Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements,” J. Comput. Phys. 230(19), 7364–7383 (2011).

[Crossref]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[Crossref]

A. K Jha, M. A Kupinski, H. H Barrett, E. Clarkson, and J. H Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29(9), 1885–1899 (2012).

[Crossref]

F. Leblond, H. Dehghani, D. Kepshire, and B. W Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26(6), 1444–1457 (2009).

[Crossref]

J. Shi, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion,” J. Opt. Soc. Am. A 30(3), 437–447 (2013).

[Crossref]

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).

[Crossref]
[PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).

[Crossref]
[PubMed]

A. K. Jha, E. Clarkson, M. A. Kupinski, and H. H. Barrett, “Joint reconstruction of activity and attenuation map using LM SPECT emission data,” Medical Imaging 2013: Physics of Medical Imaging 8668, 86681W (2013).

[Crossref]

W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imag. Biol. 6(3), 149–159 (2004).

[Crossref]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).

[Crossref]
[PubMed]

M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, “Image reconstruction for bioluminescence tomography from partial measurement,” Opt. Express 15(18), 11095–11116 (2007).

[Crossref]
[PubMed]

Q. Fang and D. A. Boas, “Monte carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).

[Crossref]
[PubMed]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18(8), 8630–8646 (2010).

[Crossref]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).

[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).

[Crossref]
[PubMed]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40(3), 431–434 (2015).

[Crossref]
[PubMed]

A. Jin, B. Yazici, A. Ale, and V. Ntziachristos, “Preconditioning of the fluorescence diffuse optical tomography sensing matrix based on compressive sensing,” Opt. Lett. 37(20), 4326–4328 (2012).

[Crossref]
[PubMed]

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3(2), 229–274 (2011).

[Crossref]
[PubMed]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint ℓ1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57(6), 1459 (2012).

[Crossref]
[PubMed]

L. Cao and J. Peter, “Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system,” Phys. Med. Biol. 55(9), 2693 (2010).

[Crossref]
[PubMed]

J. Qi and R. M. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51(15), R541 (2006).

[Crossref]
[PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921 (2008).

[Crossref]
[PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225 (2005).

[Crossref]
[PubMed]

SB Raymond, ATN Kumar, DA Boas, and BJ Bacskai, “Optimal parameters for near infrared fluorescence imaging of amyloid plaques in alzheimer’s disease mouse models,” Phys. Med. Biol. 54(20), 6201 (2009).

[Crossref]
[PubMed]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R Arridge, and J. P Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913 (2005).

[Crossref]
[PubMed]

R. M. Lewitt and S. Matej, “Overview of methods for image reconstruction from projections in emission computed tomography,” Proc. IEEE 91(10), 1588–1611 (2003).

[Crossref]

Y. Zhu, A. K. Jha, J. K. Dreyer, H. N. D. Le, J. U. Kang, P. E. Roland, D. F. Wong, and A. Rahmim, “A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing,” Proc. SPIE 10059, 1005911 (2017).

[Crossref]

G. Kontaxakis and L. G Strauss, “Maximum likelihood algorithms for image reconstruction in Positron Emission Tomography,” Radionuclides Oncol. 8, 73–106 (1998)

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51(1), 34–81 (2009).

[Crossref]

L. Adhikari, D. Zhu, C. Li, and R. F. Marcia, “Nonconvex reconstruction for low-dimensional fluorescence molecular tomographic poisson observations,” 2015 IEEE International Conference on Image Processing (ICIP), 2404–2408 (2015).

Y. Zhu, A. K. Jha, D. Wong, and A. Rahmim, “Improved sparse reconstruction for fluorescence molecular tomography with poisson noise modeling,” Biophotonics Congress: Biomedical Optics Congress 2018, JTu3A.51 (2018).

H. H. Barrett and K. J. Myers, Foundations of Image Science, 1 ed. (Wiley, 2004).

A. K. Jha, “Retrieving information from scattered photons in medical imaging,” Ph.D dissertation, The University of Arizona, 2013.