Abstract

Touch screen panel (TSP) technology has dramatically enhanced the connectivity between man and machine, in particular within mobile consumer electronics where mobility is a key design criterion. This paper introduces a novel charge-sensing technique derived from the behavioral characteristics of a mutual capacitive touch screen panel. The approach is based on a reduced scan algorithm whereby both the target and its surroundings form the node and the selection process is conducted in two phases. In the first phase, the introduction of a charge on the TSP is sensed, while the second phase evaluates when the touch event occurs on the TSP. The proposed algorithm reduces the number of sensing nodes activated during the waiting period by observing the behavior of a single row within the charge sensing array, as opposed to the more conventional approach in which all TSP nodes are scanned. As a result, power consumption is reduced by 60% during the sensing phase, while the dynamic sensing range is increased by a factor of 38% for a complete two-stage sensing cycle.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription