Abstract

The emission and conductivity characteristics of oxide cathodes depend largely on the activation process. In this paper, the electrical properties of new type of oxide cathodes for cathode ray tube (CRT) application, supplied by LG Philips Displays, have been investigated in relation to different cathode activation regimes. The influence of the activation process over different durations has been investigated. A temperature of T=1425K was chosen to be higher than the optimum cathode activation temperature (T=1200K), and the other temperature of T=1125K was lower than that. The electron activation energy (E) was found to vary in the range from 0.58 to 2.28 eV for cathodes activated at the higher temperature regime, and from 1.08 to 1.9 eV for those activated at the lower temperature regime. Scanning electron microscopy (SEM) and electron diffraction X-ray (EDX) analyses show a structural phase transformation in the oxide material that was activated at 1125 K for a period of 1-12 hours. The SEM mapping shows a large contamination of Ba in the top layer of oxide material. The activator agents tungsten and aluminum are found to penetrate into the BaO\SrO layer in two different ways.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription