Abstract

Compensated Strehl-ratio predictions for a finite-sized beam in the presence of thermal blooming and atmospheric turbulence can be obtained from infinite-beam results by use of a propagation reconstruction theory and the exact analytic solution to the thermal blooming problem. From this exact solution of the linear theory for the structure functions in nonuniform atmospheres, we have developed analytical functional scaling of absorption profiles. We have used this analytic scaling to develop a fast and accurate systems model for the whole-beam Strehl ratio. The results from this systems model, taking only seconds on a microcomputer, agree with the exact analytic theory and with nonlinear four-dimensional wave-optics simulations.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Perturbative approach to the small-scale physics of the interaction of thermal blooming and turbulence

S. Enguehard and B. Hatfield
J. Opt. Soc. Am. A 8(4) 637-646 (1991)

Perturbation growth by thermal blooming in turbulence

T. J. Karr, J. R. Morris, D. H. Chambers, J. A. Viecelli, and P. G. Cramer
J. Opt. Soc. Am. B 7(6) 1103-1124 (1990)

Turbulence Effects on Thermal Blooming

Frederick G. Gebhardt, David C. Smith, Rudolph G. Buser, and Robert S. Rohde
Appl. Opt. 12(8) 1794-1805 (1973)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription