Abstract

The laws of geometrical optics establish that certain imaging properties cannot be realized. For example, it is impossible to image sharply any three-dimensional region with nonunit magnification. Hamilton’s characteristic functions not only offer a simple means to determine whether certain properties are unattainable but have also been used to derive bounds in answer to the more practical question: “How closely can any particular unattainable ideal be approached?” Basic matters that relate to these bounds and whether they can be attained by realizable systems are considered here. Limits to the task of imaging more than a single plane object are used for illustration. A fundamental constraint has been overlooked in earlier research on this topic and a new bound is derived for the performance of systems in a classic lens design problem, but new questions emerge and remain unanswered.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Forms of the characteristic function for asymmetric systems that form sharp images to first order

Bryan D. Stone and G. W. Forbes
J. Opt. Soc. Am. A 9(5) 820-831 (1992)

Characterization of first-order optical properties for asymmetric systems

Bryan D. Stone and G. W. Forbes
J. Opt. Soc. Am. A 9(3) 478-489 (1992)

Performance bounds on synchronous laser line scan systems

Jules S. Jaffe
Opt. Express 13(3) 738-748 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription