Table 1
Influence of the Distance of Propagation and the Number of Gaussian Beams on the SFOR in the Case (Subsection 5.A) Where $\u220a=0.1\mathrm{dB},$
$d=4{\omega}_{0}=40\mu m,$
and $\mathrm{\lambda}=1.55\mu m$
N

$z={z}_{T}$

$z=1.5{z}_{T}$

$z=2{z}_{T}$


12  21/25  17/25  15/25 
16  29/33  25/33  23/33 
20  37/41  33/41  31/41 
Table 2
Influence of the Compression Ratio, the Distance of Propagation, and the Number of Gaussian Beams on the SFOR in the Case (Subsection 5.A) Where $z={z}_{T},$
$\u220a=0.2\mathrm{dB},$
$\mathrm{\lambda}=1.55\mu m,$
and ${\omega}_{0}=10\mu m$
N

$d=4{\omega}_{0}$

$d=6{\omega}_{0}$

$d=8{\omega}_{0}$


12  21/25  18/25  17/25 
16  29/33  27/33  25/33 
20  37/41  35/41  33/41 
Table 3
Maximum Absolute Value of the Difference between Moduli of $h(x,z)$
from Eqs. (15
) and (19
) Due to ${L}^{\prime},$
Where ${\omega}_{0}=10\mu m,$
$\mathrm{\lambda}=1.55\mu m,$
and $z={z}_{T}$
N

$d=4{\omega}_{0}$

$d=6{\omega}_{0}$

$d=8{\omega}_{0}$


8 
$1.04\times {10}^{3}$

$3.86\times {10}^{6}$

$2.28\times {10}^{9}$

12 
$9.48\times {10}^{4}$

$3.14\times {10}^{6}$

$2.08\times {10}^{9}$

16 
$9.20\times {10}^{4}$

$3.06\times {10}^{6}$

$1.88\times {10}^{9}$

20 
$8.20\times {10}^{4}$

$2.91\times {10}^{6}$

$1.78\times {10}^{9}$

Table 4
Maximum Absolute Value of the Difference between Moduli of $h(x,z)$
from Eqs. (15
) and (24
), Where ${\omega}_{0}=10\mu m,$
$z={z}_{T},$
$\mathrm{\lambda}=1.55\mu m,$
and $L=1.4{\omega}_{0}$
N

$d=4{\omega}_{0}$

$d=6{\omega}_{0}$

$d=8{\omega}_{0}$


12 
$8.29\times {10}^{2}$

$6.85\times {10}^{2}$

$5.70\times {10}^{2}$

20 
$1.02\times {10}^{1}$

$8.38\times {10}^{2}$

$7.63\times {10}^{2}$

Table 5
Maximum Absolute Value of the Difference between Moduli of $h(x,z)$
from Eqs. (15
) and (24
), Where ${\omega}_{0}=10\mu m,$
$z={z}_{T},$
$\mathrm{\lambda}=1.55\mu m,$
and $L=2{\omega}_{0}$
N

$d=4{\omega}_{0}$

$d=6{\omega}_{0}$

$d=8{\omega}_{0}$


12 
$1.37\times {10}^{2}$

$7.25\times {10}^{3}$

$5.71\times {10}^{3}$

20 
$1.54\times {10}^{2}$

$9.55\times {10}^{3}$

$7.98\times {10}^{3}$

Table 6
Design Frame of an Axial Demultiplexing for $2N+1$
Fibers SFOR, Where $L=42.5\mu m,$
$\mathrm{\lambda}=1.55\mu m,$
$\mathrm{\Delta}\mathrm{\lambda}=0.8\mathrm{nm},$
$\u220a=0.2\mathrm{dB}$
N

${\omega}_{0}$
(μm)  τ 
m

${z}_{T(m/2)}$
(cm) 
$\mathrm{\Delta}({z}_{T(m/2)})$
(μm) 
$(2N+1)d$

$\hspace{1em}\u220a=0.1\mathrm{dB}$

$\hspace{1em}\u220a=0.2\mathrm{dB}$


16  5  50  1  4.03  20.81  8.25 mm  0/33  3/33 
30  5  50  1  4.03  20.81  1.52 cm  29/61  33/61 
30  5  35  2  3.95  20.39  1.06 cm  17/61  23/61 
16  30  9  3  14.11  72.82  8.91 mm  15/33  15/33 
30  30  9  3  14.11  72.82  1.64 cm  43/61  43/61 
30  30  9  4  18.81  97.09  1.64 cm  37/61  39/61 
30

30

10.1

2

11.84

61.14

1.84 cm

47/61

49/61

30

30

10.1

3

17.76

91.71

1.84 cm

41/61

43/61

30  30  15  1  13.06  67.43  2.74 cm  51/61  51/61 
30  30  15  2  26.12  134.86  2.74 cm  41/61  45/61 
30  30  15  3  39.18  202.29  2.74 cm  31/61  35/61 