Abstract

By introducing a local contrast-sensitivity function, defined as the Fourier transform of the local point-spread function, we have constructed a model of retinal inhomogeneity that predicts the contrast sensitivity for circular homogeneous or inhomogeneous sinusoidal targets up to 16° in diameter. This model assumes that (1) contrast sensitivity is mediated by a standard, receptive-field-type filter function (one that fits our data somewhat better than available receptive-field models); (2) retinal inhomogeneity is circularly symmetric; i.e., receptive-field size varies only with eccentricity; (3) this size variation is governed by a linear scaling factor out to at least 8° eccentricity; and (4) the local contrast sensitivities at different parts of the retina combine in accord with a fourth-power probability-summation rule. The parameters of the model were determined by fitting contrast-sensitivity data for a new class of stimulus patterns: locally sinusoidal, circularly symmetric targets with radially varying spatial frequency (but constant amplitude). The model also fits contrast thresholds for circular cosine disks and annuli of various sizes and eccentricities. (Predictions for noncircular patterns require a minor extension.) The results suggest that the uniform, homogeneous sinusoidal patterns used throughout the literature provide surprisingly little information about the form of receptive fields.

© 1985 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity

D. H. Kelly
J. Opt. Soc. Am. A 1(1) 107-113 (1984)

Visual processing of moving stimuli

D. H. Kelly
J. Opt. Soc. Am. A 2(2) 216-225 (1985)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription