Abstract

An alternative interpretation of the diffraction of blazed transmission gratings with moderate structure period is proposed according to a modified extended scalar theory (MEST). The diffraction field on the bottom facet of the grating is considered to be the interference of four subfields investigated in the problem of diffraction of a plane wave by an infinite half-plane. It is observed that MEST gives the total field that agrees with rigorous coupled-wave analysis (RCWA), and the result is more reliable than that of extended scalar theory (EST). The MEST is still a ray-optical-based approximation approach, and the region of validity is compared with EST and RCWA.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the influence of the passive facet of blazed transmission gratings in the intermediate diffraction regime

Oliver Sandfuchs, Daniel Pätz, Stefan Sinzinger, Alexander Pesch, and Robert Brunner
J. Opt. Soc. Am. A 25(8) 1885-1893 (2008)

Validity of scalar diffraction theory and effective medium theory for analysis of a blazed grating microstructure at oblique incidence

Dongsheng Ruan, Lin Zhu, Xufeng Jing, Ying Tian, Le Wang, and Shangzhong Jin
Appl. Opt. 53(11) 2357-2365 (2014)

On the intensity distribution function of blazed reflective diffraction gratings

R. Casini and P. G. Nelson
J. Opt. Soc. Am. A 31(10) 2179-2184 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription