Abstract

An implementation of the discrete dipole approximation for dipoles embedded in film on substrate is derived. It is capable of predicting the scattering response from various types of subsurface features such as trenches and contact-vias. An arbitrarily shaped subsurface feature is modeled with dipoles inside the film material on top of a substrate. Relative polarizability, direct interactions, and reflection interactions are derived and applied to construct a system of equations that are solved with an iterative method. The far-field scattering response is computed from the dipole moment solution of the system matrix with the help of the reciprocity theorem. The validity of the proposed method is compared with that of other existing theories, and the effect of film structure on far-field scattering is shown with high-aspect-ratio cylindrical contact-via models.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Internal and scattered electric fields in the discrete dipole approximation

Stephen D. Druger and Burt V. Bronk
J. Opt. Soc. Am. B 16(12) 2239-2246 (1999)

Scattering from rough thin films: discrete-dipole-approximation simulations

Hannu Parviainen and Kari Lumme
J. Opt. Soc. Am. A 25(1) 90-97 (2008)

Radiation forces in the discrete-dipole approximation

A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot
J. Opt. Soc. Am. A 18(8) 1944-1953 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription