Abstract

Volume measurement of a phase object is one of the most distinctive capabilities of quantitative phase microscopy (QPM). However, the accuracy of a measured volume is limited by the different noises of a measurement system and the finite bandpass filter used in the phase extraction algorithm. In this paper, we analyze the inherent errors in volume measurement with QPM and propose the optimum condition that can minimize these errors. We find that phase information of a sample in the frequency domain nonlinearly oscillates as a function of the phase shift corresponding to the sample and its medium, and that the phase information of a sample inside the bandpass filter can be maximized by a proper phase shift. Through numerical simulations and actual experiments, we demonstrate that the error in phase volume measurement can be effectively reduced by the enhancement of the phase signal inside the bandpass region using an optimum amount of phase, which can be controlled by changing either the medium index or the wavelength of illumination.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy

Seungrag Lee, Ji Yong Lee, Wenzhong Yang, and Dug Young Kim
Opt. Express 17(8) 6476-6486 (2009)

Quantitative phase microscopy via optimized inversion of the phase optical transfer function

Micah H. Jenkins and Thomas K. Gaylord
Appl. Opt. 54(28) 8566-8579 (2015)

Resolution enhancement in quantitative phase microscopy

Vicente Micó, Juanjuan Zheng, Javier Garcia, Zeev Zalevsky, and Peng Gao
Adv. Opt. Photon. 11(1) 135-214 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription