Abstract

We introduce electrically thin dielectric lenses and reflectors that focus a plane wave based on the principles of phase compensation and constructive wave interference. Phase compensation is achieved by arranging thin rectangular slabs having different dielectric permittivity according to a permittivity profile obtained through analytic design equations. All incident rays parallel to the optical axis converge to a focal point with equalized optical paths resulting in constructive interference. Plane wave simulations indicate strong focusing, even in the presence of impedance mismatch between free space and the dielectric layers composing the lens. We demonstrate focusing at 9.45 GHz using a lens fabricated with commercially available dielectric materials. In addition to focusing, the flat lens proposed here demonstrates relatively high power gain at the focal point. We also present a flat reflector based on the same concept. We believe that the proposed dielectric lens and reflector are strong candidates to replace heavy metallic dishes and reflectors used in a variety of applications, especially satellites.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytical models for electrically thin flat lenses and reflectors

Miguel Ruphuy and Omar M. Ramahi
J. Opt. Soc. Am. A 32(4) 507-513 (2015)

Spherical aberration in electrically thin flat lenses

Miguel Ruphuy and Omar M. Ramahi
J. Opt. Soc. Am. A 33(8) 1531-1536 (2016)

Refraction in electrically thin inhomogeneous media

Miguel Ruphuy and Omar M. Ramahi
J. Opt. Soc. Am. A 33(4) 538-543 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription