Abstract

We investigated the spatial characteristics of the diffuse light in the eye at two different wavelengths and the extent to which this may affect red–green relative spectral sensitivity. The fundus reflectance of six subjects was measured for different field sizes ranging from a 0.18° to 7.28° radius and for two different wavelengths, 560 and 650 nm. The experimental setup consisted of having an instrument project uniform disks on the fundus and recording their retinal images after a double pass through the eye. Additionally, the relative spectral sensitivity for the same wavelengths was measured using heterochromatic flicker photometry for a stimulus of a 0.4° radius with and without the presence of a synchronously flickering concentric annulus. We concluded that although light backscattered from the fundus contributes to vision, the effect is not strong and can only be observed under appropriate laboratory conditions. This suggests that diffuse light from deeper fundus layers is unlikely to have a practical relevance to vision.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral reflectance of the human ocular fundus

François C. Delori and Kent P. Pflibsen
Appl. Opt. 28(6) 1061-1077 (1989)

Color vision in the peripheral retina. I. Spectral sensitivity*

Israel Abramov and James Gordon
J. Opt. Soc. Am. 67(2) 195-202 (1977)

Pupil responses to foveal exchange of monochromatic lights

Rockefeller S. L. Young and Mathew Alpern
J. Opt. Soc. Am. 70(6) 697-706 (1980)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  2. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
    [Crossref]
  3. J. Santamara, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [Crossref]
  4. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [Crossref]
  5. H. Ginis, O. Sahin, A. Pennos, and P. Artal, “Compact optical integration instrument to measure intraocular straylight,” Biomed. Opt. Express 5, 3036–3041 (2014).
    [Crossref]
  6. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [Crossref]
  7. D. V. Norren and L. F. Tiemejer, “Spectral reflectance of the human eye,” Vis. Res. 26, 313–320 (1985).
    [Crossref]
  8. T. T. J. M. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance: historical and present ideas,” Prog. Retinal Eye Res. 22, 171–200 (2003).
    [Crossref]
  9. H. Ginis, G. M. Pérez, J. M. Bueno, and P. Artal, “The wide-angle point spread function of the human eye reconstructed by a new optical method,” J. Vis. 12(3), 20 (2012).
    [Crossref]
  10. H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Vis. Sci. 54, 3702–3708 (2013).
    [Crossref]
  11. N. P. Zagers, J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002).
    [Crossref]
  12. G. Wagner and R. M. Boynton, “Comparison of four methods of heterochromatic photometry,” J. Opt. Soc. Am. 62, 1508–1515 (1972).
    [Crossref]
  13. L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 3 (2005).
    [Crossref]
  14. A. Stockman, H. Jägle, M. Pirzer, and L. T. Sharpe, “The dependence of luminous efficiency on chromatic adaptation,” J. Vis. 8(16), 1–26 (2008).
  15. M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues—an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
    [Crossref]
  16. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Relationship of senile macular degeneration to ocular pigmentation,” Am. J. Ophthalmol. 99, 185–187 (1985).
    [Crossref]
  17. K. Wakamatsu, D. N. Hu, S. A. McCormick, and S. Ito, “Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides,” Pigment Cell Melanoma Res. 21, 97–105 (2008).
    [Crossref]
  18. T. J. Berendschot, J. van de Kraats, and D. van Norren, “Wavelength dependence of the Stiles-Crawford effect explained by perception of backscattered light from the choroid,” J. Opt. Soc. Am. A 18, 1445–1451 (2001).
    [Crossref]
  19. P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vis. Res. 45, 1957–1965 (2005).
    [Crossref]
  20. J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vis. Res. 36, 2229–2247 (1996).
    [Crossref]
  21. J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8), 531–542 (2002).
    [Crossref]
  22. J. Pokorny, V. C. Smith, and S. J. Starr, “Variability of color mixture data. II. The effect of viewing field size on the unit coordinates,” Vis. Res. 16, 1095–1098 (1976).
    [Crossref]
  23. S. Marcos, R. P. Tornow, A. E. Elsner, and R. Navarro, “Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects,” Vis. Res. 37, 1909–1915 (1997).
    [Crossref]
  24. E. Yamada, “Some structural features of the fovea centralis in the human retina,” Arch. Ophthalmol. 82, 151–159 (1969).
    [Crossref]
  25. S. L. Polyak, The Retina (University of Chicago, 1941).
  26. W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. Lond. B 123, 90–118 (1937).
    [Crossref]
  27. J. Pokorny and V. C. Smith, “Effect of field size on red-green color mixture equations,” J. Opt. Soc. Am. 66, 705–708 (1976).
    [Crossref]
  28. S. A. Burns and A. E. Elsner, “Color matching at high illuminances: the color-match-area effect and photopigment bleaching,” J. Opt. Soc. Am. A 2, 698–704 (1985).
    [Crossref]
  29. M. Alpern, “Lack of uniformity in colour matching,” J. Physiol. 288, 85–105 (1979).
  30. G. Wyszecki and W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vis. Res. 20, 23–37 (1980).
    [Crossref]
  31. L. T. Sharpe, A. Stockman, H. Knau, and H. Jägle, “Macular pigment densities derived from central and peripheral spectral sensitivity differences,” Invest. Ophthalmol. Visual Sci. 38, 3233–3239 (1998).
  32. T. T. J. M. Berendschot, J. van de Kraats, M. J. Kanis, and D. van Norren, “Directional model analysis of the spectral reflection from the fovea and para-fovea,” J. Biomed. Opt. 15, 065005 (2010).
    [Crossref]
  33. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

2014 (1)

2013 (1)

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Vis. Sci. 54, 3702–3708 (2013).
[Crossref]

2012 (1)

H. Ginis, G. M. Pérez, J. M. Bueno, and P. Artal, “The wide-angle point spread function of the human eye reconstructed by a new optical method,” J. Vis. 12(3), 20 (2012).
[Crossref]

2010 (1)

T. T. J. M. Berendschot, J. van de Kraats, M. J. Kanis, and D. van Norren, “Directional model analysis of the spectral reflection from the fovea and para-fovea,” J. Biomed. Opt. 15, 065005 (2010).
[Crossref]

2008 (2)

A. Stockman, H. Jägle, M. Pirzer, and L. T. Sharpe, “The dependence of luminous efficiency on chromatic adaptation,” J. Vis. 8(16), 1–26 (2008).

K. Wakamatsu, D. N. Hu, S. A. McCormick, and S. Ito, “Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides,” Pigment Cell Melanoma Res. 21, 97–105 (2008).
[Crossref]

2005 (2)

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vis. Res. 45, 1957–1965 (2005).
[Crossref]

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 3 (2005).
[Crossref]

2003 (1)

T. T. J. M. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance: historical and present ideas,” Prog. Retinal Eye Res. 22, 171–200 (2003).
[Crossref]

2002 (2)

2001 (1)

1998 (1)

L. T. Sharpe, A. Stockman, H. Knau, and H. Jägle, “Macular pigment densities derived from central and peripheral spectral sensitivity differences,” Invest. Ophthalmol. Visual Sci. 38, 3233–3239 (1998).

1997 (1)

S. Marcos, R. P. Tornow, A. E. Elsner, and R. Navarro, “Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects,” Vis. Res. 37, 1909–1915 (1997).
[Crossref]

1996 (1)

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vis. Res. 36, 2229–2247 (1996).
[Crossref]

1995 (2)

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues—an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[Crossref]

1989 (1)

1987 (1)

1986 (1)

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

1985 (3)

S. A. Burns and A. E. Elsner, “Color matching at high illuminances: the color-match-area effect and photopigment bleaching,” J. Opt. Soc. Am. A 2, 698–704 (1985).
[Crossref]

D. V. Norren and L. F. Tiemejer, “Spectral reflectance of the human eye,” Vis. Res. 26, 313–320 (1985).
[Crossref]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Relationship of senile macular degeneration to ocular pigmentation,” Am. J. Ophthalmol. 99, 185–187 (1985).
[Crossref]

1980 (1)

G. Wyszecki and W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vis. Res. 20, 23–37 (1980).
[Crossref]

1979 (1)

M. Alpern, “Lack of uniformity in colour matching,” J. Physiol. 288, 85–105 (1979).

1976 (2)

J. Pokorny and V. C. Smith, “Effect of field size on red-green color mixture equations,” J. Opt. Soc. Am. 66, 705–708 (1976).
[Crossref]

J. Pokorny, V. C. Smith, and S. J. Starr, “Variability of color mixture data. II. The effect of viewing field size on the unit coordinates,” Vis. Res. 16, 1095–1098 (1976).
[Crossref]

1972 (1)

1969 (1)

E. Yamada, “Some structural features of the fovea centralis in the human retina,” Arch. Ophthalmol. 82, 151–159 (1969).
[Crossref]

1966 (1)

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

1937 (1)

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. Lond. B 123, 90–118 (1937).
[Crossref]

Alpern, M.

M. Alpern, “Lack of uniformity in colour matching,” J. Physiol. 288, 85–105 (1979).

Artal, P.

Berendschot, T. J.

Berendschot, T. T.

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vis. Res. 36, 2229–2247 (1996).
[Crossref]

Berendschot, T. T. J. M.

T. T. J. M. Berendschot, J. van de Kraats, M. J. Kanis, and D. van Norren, “Directional model analysis of the spectral reflection from the fovea and para-fovea,” J. Biomed. Opt. 15, 065005 (2010).
[Crossref]

T. T. J. M. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance: historical and present ideas,” Prog. Retinal Eye Res. 22, 171–200 (2003).
[Crossref]

N. P. Zagers, J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002).
[Crossref]

Bescós, J.

Boynton, R. M.

Bueno, J. M.

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Vis. Sci. 54, 3702–3708 (2013).
[Crossref]

H. Ginis, G. M. Pérez, J. M. Bueno, and P. Artal, “The wide-angle point spread function of the human eye reconstructed by a new optical method,” J. Vis. 12(3), 20 (2012).
[Crossref]

Burns, S. A.

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vis. Res. 45, 1957–1965 (2005).
[Crossref]

S. A. Burns and A. E. Elsner, “Color matching at high illuminances: the color-match-area effect and photopigment bleaching,” J. Opt. Soc. Am. A 2, 698–704 (1985).
[Crossref]

Campbell, F. W.

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Carroll, J.

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8), 531–542 (2002).
[Crossref]

DeLint, P. J.

T. T. J. M. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance: historical and present ideas,” Prog. Retinal Eye Res. 22, 171–200 (2003).
[Crossref]

Delori, F. C.

F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[Crossref]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Relationship of senile macular degeneration to ocular pigmentation,” Am. J. Ophthalmol. 99, 185–187 (1985).
[Crossref]

Elsner, A. E.

S. Marcos, R. P. Tornow, A. E. Elsner, and R. Navarro, “Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects,” Vis. Res. 37, 1909–1915 (1997).
[Crossref]

S. A. Burns and A. E. Elsner, “Color matching at high illuminances: the color-match-area effect and photopigment bleaching,” J. Opt. Soc. Am. A 2, 698–704 (1985).
[Crossref]

Fitch, K. A.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Relationship of senile macular degeneration to ocular pigmentation,” Am. J. Ophthalmol. 99, 185–187 (1985).
[Crossref]

Ginis, H.

H. Ginis, O. Sahin, A. Pennos, and P. Artal, “Compact optical integration instrument to measure intraocular straylight,” Biomed. Opt. Express 5, 3036–3041 (2014).
[Crossref]

H. Ginis, G. M. Pérez, J. M. Bueno, and P. Artal, “The wide-angle point spread function of the human eye reconstructed by a new optical method,” J. Vis. 12(3), 20 (2012).
[Crossref]

Ginis, H. S.

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Vis. Sci. 54, 3702–3708 (2013).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues—an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref]

Hu, D. N.

K. Wakamatsu, D. N. Hu, S. A. McCormick, and S. Ito, “Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides,” Pigment Cell Melanoma Res. 21, 97–105 (2008).
[Crossref]

Ito, S.

K. Wakamatsu, D. N. Hu, S. A. McCormick, and S. Ito, “Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides,” Pigment Cell Melanoma Res. 21, 97–105 (2008).
[Crossref]

Jagla, W.

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 3 (2005).
[Crossref]

Jägle, H.

A. Stockman, H. Jägle, M. Pirzer, and L. T. Sharpe, “The dependence of luminous efficiency on chromatic adaptation,” J. Vis. 8(16), 1–26 (2008).

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 3 (2005).
[Crossref]

L. T. Sharpe, A. Stockman, H. Knau, and H. Jägle, “Macular pigment densities derived from central and peripheral spectral sensitivity differences,” Invest. Ophthalmol. Visual Sci. 38, 3233–3239 (1998).

Kanis, M. J.

T. T. J. M. Berendschot, J. van de Kraats, M. J. Kanis, and D. van Norren, “Directional model analysis of the spectral reflection from the fovea and para-fovea,” J. Biomed. Opt. 15, 065005 (2010).
[Crossref]

Knau, H.

L. T. Sharpe, A. Stockman, H. Knau, and H. Jägle, “Macular pigment densities derived from central and peripheral spectral sensitivity differences,” Invest. Ophthalmol. Visual Sci. 38, 3233–3239 (1998).

Marcos, S.

S. Marcos, R. P. Tornow, A. E. Elsner, and R. Navarro, “Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects,” Vis. Res. 37, 1909–1915 (1997).
[Crossref]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[Crossref]

McCormick, S. A.

K. Wakamatsu, D. N. Hu, S. A. McCormick, and S. Ito, “Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides,” Pigment Cell Melanoma Res. 21, 97–105 (2008).
[Crossref]

McLellan, J. S.

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vis. Res. 45, 1957–1965 (2005).
[Crossref]

Müller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues—an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref]

Navarro, R.

S. Marcos, R. P. Tornow, A. E. Elsner, and R. Navarro, “Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects,” Vis. Res. 37, 1909–1915 (1997).
[Crossref]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[Crossref]

Neitz, J.

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8), 531–542 (2002).
[Crossref]

Neitz, M.

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8), 531–542 (2002).
[Crossref]

Norren, D. V.

D. V. Norren and L. F. Tiemejer, “Spectral reflectance of the human eye,” Vis. Res. 26, 313–320 (1985).
[Crossref]

Pennos, A.

H. Ginis, O. Sahin, A. Pennos, and P. Artal, “Compact optical integration instrument to measure intraocular straylight,” Biomed. Opt. Express 5, 3036–3041 (2014).
[Crossref]

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Vis. Sci. 54, 3702–3708 (2013).
[Crossref]

Perez, G. M.

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Vis. Sci. 54, 3702–3708 (2013).
[Crossref]

Pérez, G. M.

H. Ginis, G. M. Pérez, J. M. Bueno, and P. Artal, “The wide-angle point spread function of the human eye reconstructed by a new optical method,” J. Vis. 12(3), 20 (2012).
[Crossref]

Pflibsen, K. P.

Pirzer, M.

A. Stockman, H. Jägle, M. Pirzer, and L. T. Sharpe, “The dependence of luminous efficiency on chromatic adaptation,” J. Vis. 8(16), 1–26 (2008).

Pokorny, J.

J. Pokorny, V. C. Smith, and S. J. Starr, “Variability of color mixture data. II. The effect of viewing field size on the unit coordinates,” Vis. Res. 16, 1095–1098 (1976).
[Crossref]

J. Pokorny and V. C. Smith, “Effect of field size on red-green color mixture equations,” J. Opt. Soc. Am. 66, 705–708 (1976).
[Crossref]

Polyak, S. L.

S. L. Polyak, The Retina (University of Chicago, 1941).

Prieto, P. M.

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vis. Res. 45, 1957–1965 (2005).
[Crossref]

Roggan, A.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues—an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref]

Sahin, O.

Santamara, J.

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues—an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref]

Sharpe, L. T.

A. Stockman, H. Jägle, M. Pirzer, and L. T. Sharpe, “The dependence of luminous efficiency on chromatic adaptation,” J. Vis. 8(16), 1–26 (2008).

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 3 (2005).
[Crossref]

L. T. Sharpe, A. Stockman, H. Knau, and H. Jägle, “Macular pigment densities derived from central and peripheral spectral sensitivity differences,” Invest. Ophthalmol. Visual Sci. 38, 3233–3239 (1998).

Smith, V. C.

J. Pokorny, V. C. Smith, and S. J. Starr, “Variability of color mixture data. II. The effect of viewing field size on the unit coordinates,” Vis. Res. 16, 1095–1098 (1976).
[Crossref]

J. Pokorny and V. C. Smith, “Effect of field size on red-green color mixture equations,” J. Opt. Soc. Am. 66, 705–708 (1976).
[Crossref]

Starr, S. J.

J. Pokorny, V. C. Smith, and S. J. Starr, “Variability of color mixture data. II. The effect of viewing field size on the unit coordinates,” Vis. Res. 16, 1095–1098 (1976).
[Crossref]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vis. Res. 20, 23–37 (1980).
[Crossref]

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. Lond. B 123, 90–118 (1937).
[Crossref]

Stockman, A.

A. Stockman, H. Jägle, M. Pirzer, and L. T. Sharpe, “The dependence of luminous efficiency on chromatic adaptation,” J. Vis. 8(16), 1–26 (2008).

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 3 (2005).
[Crossref]

L. T. Sharpe, A. Stockman, H. Knau, and H. Jägle, “Macular pigment densities derived from central and peripheral spectral sensitivity differences,” Invest. Ophthalmol. Visual Sci. 38, 3233–3239 (1998).

Tiemejer, L. F.

D. V. Norren and L. F. Tiemejer, “Spectral reflectance of the human eye,” Vis. Res. 26, 313–320 (1985).
[Crossref]

Tornow, R. P.

S. Marcos, R. P. Tornow, A. E. Elsner, and R. Navarro, “Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects,” Vis. Res. 37, 1909–1915 (1997).
[Crossref]

van de Kraats, J.

T. T. J. M. Berendschot, J. van de Kraats, M. J. Kanis, and D. van Norren, “Directional model analysis of the spectral reflection from the fovea and para-fovea,” J. Biomed. Opt. 15, 065005 (2010).
[Crossref]

N. P. Zagers, J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002).
[Crossref]

T. J. Berendschot, J. van de Kraats, and D. van Norren, “Wavelength dependence of the Stiles-Crawford effect explained by perception of backscattered light from the choroid,” J. Opt. Soc. Am. A 18, 1445–1451 (2001).
[Crossref]

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vis. Res. 36, 2229–2247 (1996).
[Crossref]

van Norren, D.

T. T. J. M. Berendschot, J. van de Kraats, M. J. Kanis, and D. van Norren, “Directional model analysis of the spectral reflection from the fovea and para-fovea,” J. Biomed. Opt. 15, 065005 (2010).
[Crossref]

T. T. J. M. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance: historical and present ideas,” Prog. Retinal Eye Res. 22, 171–200 (2003).
[Crossref]

N. P. Zagers, J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002).
[Crossref]

T. J. Berendschot, J. van de Kraats, and D. van Norren, “Wavelength dependence of the Stiles-Crawford effect explained by perception of backscattered light from the choroid,” J. Opt. Soc. Am. A 18, 1445–1451 (2001).
[Crossref]

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vis. Res. 36, 2229–2247 (1996).
[Crossref]

Wagner, G.

Wakamatsu, K.

K. Wakamatsu, D. N. Hu, S. A. McCormick, and S. Ito, “Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides,” Pigment Cell Melanoma Res. 21, 97–105 (2008).
[Crossref]

Weiter, J. J.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Relationship of senile macular degeneration to ocular pigmentation,” Am. J. Ophthalmol. 99, 185–187 (1985).
[Crossref]

Williams, D. R.

Wing, G. L.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Relationship of senile macular degeneration to ocular pigmentation,” Am. J. Ophthalmol. 99, 185–187 (1985).
[Crossref]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vis. Res. 20, 23–37 (1980).
[Crossref]

Yamada, E.

E. Yamada, “Some structural features of the fovea centralis in the human retina,” Arch. Ophthalmol. 82, 151–159 (1969).
[Crossref]

Zagers, N. P.

Am. J. Ophthalmol. (1)

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Relationship of senile macular degeneration to ocular pigmentation,” Am. J. Ophthalmol. 99, 185–187 (1985).
[Crossref]

Appl. Opt. (2)

Arch. Ophthalmol. (1)

E. Yamada, “Some structural features of the fovea centralis in the human retina,” Arch. Ophthalmol. 82, 151–159 (1969).
[Crossref]

Biomed. Opt. Express (1)

Invest. Ophthalmol. Vis. Sci. (2)

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Vis. Sci. 54, 3702–3708 (2013).
[Crossref]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

Invest. Ophthalmol. Visual Sci. (1)

L. T. Sharpe, A. Stockman, H. Knau, and H. Jägle, “Macular pigment densities derived from central and peripheral spectral sensitivity differences,” Invest. Ophthalmol. Visual Sci. 38, 3233–3239 (1998).

J. Biomed. Opt. (1)

T. T. J. M. Berendschot, J. van de Kraats, M. J. Kanis, and D. van Norren, “Directional model analysis of the spectral reflection from the fovea and para-fovea,” J. Biomed. Opt. 15, 065005 (2010).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Physiol. (2)

M. Alpern, “Lack of uniformity in colour matching,” J. Physiol. 288, 85–105 (1979).

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

J. Vis. (4)

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5(11), 3 (2005).
[Crossref]

A. Stockman, H. Jägle, M. Pirzer, and L. T. Sharpe, “The dependence of luminous efficiency on chromatic adaptation,” J. Vis. 8(16), 1–26 (2008).

H. Ginis, G. M. Pérez, J. M. Bueno, and P. Artal, “The wide-angle point spread function of the human eye reconstructed by a new optical method,” J. Vis. 12(3), 20 (2012).
[Crossref]

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8), 531–542 (2002).
[Crossref]

Phys. Med. Biol. (1)

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues—an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref]

Pigment Cell Melanoma Res. (1)

K. Wakamatsu, D. N. Hu, S. A. McCormick, and S. Ito, “Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides,” Pigment Cell Melanoma Res. 21, 97–105 (2008).
[Crossref]

Proc. R. Soc. Lond. B (1)

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. Lond. B 123, 90–118 (1937).
[Crossref]

Prog. Retinal Eye Res. (1)

T. T. J. M. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance: historical and present ideas,” Prog. Retinal Eye Res. 22, 171–200 (2003).
[Crossref]

Vis. Res. (6)

D. V. Norren and L. F. Tiemejer, “Spectral reflectance of the human eye,” Vis. Res. 26, 313–320 (1985).
[Crossref]

J. Pokorny, V. C. Smith, and S. J. Starr, “Variability of color mixture data. II. The effect of viewing field size on the unit coordinates,” Vis. Res. 16, 1095–1098 (1976).
[Crossref]

S. Marcos, R. P. Tornow, A. E. Elsner, and R. Navarro, “Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects,” Vis. Res. 37, 1909–1915 (1997).
[Crossref]

P. M. Prieto, J. S. McLellan, and S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vis. Res. 45, 1957–1965 (2005).
[Crossref]

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vis. Res. 36, 2229–2247 (1996).
[Crossref]

G. Wyszecki and W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vis. Res. 20, 23–37 (1980).
[Crossref]

Other (2)

S. L. Polyak, The Retina (University of Chicago, 1941).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the optical setup used for the measurement of the fundus reflectance. D, diffuser.
Fig. 2.
Fig. 2. Schematic of the psychophysical setup used to measure relative color sensitivity.
Fig. 3.
Fig. 3. Schematic of the test field used in the psychophysical experiment.
Fig. 4.
Fig. 4. Fundus reflection for two different wavelengths and for two different subject groups with respect to field size. In green (circles) the two groups are indistinguishable, whereas in red (triangles) the light-colored iris group exhibits a much higher relative reflection.
Fig. 5.
Fig. 5. Relative green to red sensitivity without annulus versus relative green to red sensitivity with annulus for all subjects. Subjects with a dark iris are depicted with triangles and subjects with a light iris with squares.
Fig. 6.
Fig. 6. Relative increase in the red to green reflectance for two field sizes with respect to relative increase in green to red sensitivity with the presence of the annulus.
Fig. 7.
Fig. 7. Relative green to red sensitivity for the two groups for the test field without the annulus (triangles) and with the annulus (circles).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I p = I + r I ,
R = I p , 650 big I p , 560 big I p , 650 small I p , 560 small .
R = 1 + r 650 big 1 + r 560 big 1 + r 650 small 1 + r 560 small .
R s = S annulus G R S noannulus G R ,

Metrics