Abstract

We present a novel time-domain coherent-mode representation for random, stationary electromagnetic beams. We subsequently introduce random, quasistationary pulsed electromagnetic beams and develop an analogous (pseudo) mode decomposition for them as well. The former decomposition is valid provided the time window in which the field is considered is much longer than the coherence time, while the latter requires the field to vanish outside the window. For stationary beams, the theory is demonstrated by an example illustrating the role of polarization in the representation. In both cases, the data needed for the construction of the mode decomposition are straightforward to measure. The formalisms enable us to treat random vector-light beams in the time domain in terms of deterministic fields. We expect that the modal representations will find a wide range of applications in problems involving spatiotemporal propagation of temporally partially coherent light in optical systems.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-monochromatic modes of quasi-stationary, pulsed scalar optical fields

Lutful Ahad, Ismo Vartiainen, Tero Setälä, Ari T. Friberg, and Jari Turunen
J. Opt. Soc. Am. A 34(9) 1469-1475 (2017)

Coherent-mode representation of partially polarized pulsed electromagnetic beams

Timo Voipio, Tero Setälä, and Ari T. Friberg
J. Opt. Soc. Am. A 30(11) 2433-2443 (2013)

Theory of partially coherent electromagnetic fields in the space–frequency domain

Jani Tervo, Tero Setälä, and Ari T. Friberg
J. Opt. Soc. Am. A 21(11) 2205-2215 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (89)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription