Abstract

We evaluate experimentally and theoretically the role of the residual ligands and ambient environment refractive index in the optical response of a single spherical gold nanoparticle on a substrate and demonstrate the changes in the near- and far-field properties of its hybridized modes in the presence of the cetyltrimethylammonium bromide (CTAB) layer. Particularly, we show that the conventional bilayer scheme for CTAB is not relevant for colloidal nanoparticles deposited on a substrate. We show that this CTAB layer considerably changes the amplitude and localization of the confinement of the electric field, which is of prime importance in the design of plasmonic complex systems coupled to emitters. Moreover, we numerically study the influence of the CTAB layer on the modification of sensitivity of plasmonic resonances of a gold nanopshere to local refractive index changes.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of the dielectric substrate on the effective optical constants of silver plasmonic films

M. N. M. N. Perera, D. Schmidt, W. E. K. Gibbs, S. Juodkazis, and P. R. Stoddart
Appl. Opt. 58(22) 6038-6044 (2019)

Enhanced localized plasmonic detections using partially-embedded gold nanoparticles and ellipsometric measurements

Rakesh Singh Moirangthem, Mohammad Tariq Yaseen, Pei-Kuen Wei, Ji-Yen Cheng, and Yia-Chung Chang
Biomed. Opt. Express 3(5) 899-910 (2012)

Optical properties of a metal nanosphere with spatially dispersive permittivity

Vitaly V. Datsyuk and Oleg M. Tovkach
J. Opt. Soc. Am. B 28(5) 1224-1230 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2009).
  3. E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3, 4042–4059 (2011).
    [Crossref]
  4. S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
    [Crossref]
  5. D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307–2314 (2006).
    [Crossref]
  6. S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris, K. H. An, W. P. Hall, and R. A. Potyrailo, “Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor,” J. Opt. Soc. Am. A 29, 994–1002 (2012).
    [Crossref]
  7. L. Cognet, M. Treguer-Delapierre, and S. Link, “Biological applications of electromagnetically active nanoparticles,” J. Phys. D 50, 200201 (2017).
    [Crossref]
  8. P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
    [Crossref]
  9. N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q. H. Xu, “Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” RSC Adv. 5, 29076–29097 (2015).
    [Crossref]
  10. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
    [Crossref]
  11. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
    [Crossref]
  12. L. Shao, Y. Tao, Q. Ruan, J. Wang, and H. Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17, 10861–10870 (2015).
    [Crossref]
  13. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
    [Crossref]
  14. S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275–1279 (2012).
    [Crossref]
  15. L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
    [Crossref]
  16. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [Crossref]
  17. V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75, 1–7 (2007).
    [Crossref]
  18. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723–10733 (2012).
    [Crossref]
  19. K. Q. Le, “Nanoplasmonic enhancement of molecular fluorescence: theory and numerical modeling,” Plasmonics 10, 475–482 (2015).
    [Crossref]
  20. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5-40 nm diameter gold nanoparticles,” Langmuir 17, 6782–6786 (2001).
    [Crossref]
  21. Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
    [Crossref]
  22. S. Lee, L. J. Anderson, C. M. Payne, and J. H. Hafner, “Structural transition in the surfactant layer that surrounds gold nanorods as observed by analytical surface-enhanced Raman spectroscopy,” Langmuir 27, 14748–14756 (2011).
    [Crossref]
  23. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
    [Crossref]
  24. Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near,” J. Phys. Chem. C 114, 7302–7307 (2010).
    [Crossref]
  25. H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
    [Crossref]
  26. F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
    [Crossref]
  27. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
    [Crossref]
  28. J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes,” J. Phys. Chem. B 109, 14257–14261 (2005).
    [Crossref]
  29. W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
    [Crossref]
  30. A. Movsesyan, A.-L. Baudrion, and P.-M. Adam, “Extinction measurements of metallic nanoparticles arrays as a way to explore the single nanoparticle plasmon resonances,” Opt. Express 26, 6439–6445 (2018).
    [Crossref]
  31. S. D. Gedney and B. Zhao, “An auxiliary differential equation formulation for the complex-frequency shifted PML,” IEEE Trans. Antennas Propag. 58, 838–847 (2010).
    [Crossref]
  32. K. Abdijalilov and J. B. Schneider, “Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: lossy material and evanescent fields,” IEEE Antennas Wireless Propag. Lett. 5, 454–458 (2006).
    [Crossref]
  33. P. Kékicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir 10, 1584–1591 (1994).
    [Crossref]
  34. M. W. Knight, J. Fan, F. Capasso, and N. J. Halas, “Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures,” Opt. Express 18, 2579–2587 (2010).
    [Crossref]
  35. J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27 (2000).
    [Crossref]
  36. H. Wang, “Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations,” Sci. Rep. 8, 1–8 (2018).
    [Crossref]
  37. S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
    [Crossref]
  38. S. Hettler, M. Dries, P. Hermann, M. Obermair, D. Gerthsen, and M. Malac, “Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications,” Micron 96, 38–47 (2017).
    [Crossref]
  39. A. J. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
    [Crossref]
  40. S. Szunerits and R. Boukherroub, “Sensing using localised surface plasmon resonance sensors,” Chem. Commun. 48, 8999–9010 (2012).
    [Crossref]
  41. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
    [Crossref]
  42. K. M. Mayer and J. H. Hafner, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
    [Crossref]
  43. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [Crossref]
  44. C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays,” Biophys. J. 93, 3684–3692 (2007).
    [Crossref]
  45. P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3, FD4–FD11 (2008).
    [Crossref]
  46. G. Barbillon, J.-L. Bijeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Biological and chemical gold nanosensors based on localized surface plasmon resonance,” Gold Bull. 40, 240–244 (2007).
    [Crossref]

2019 (1)

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

2018 (2)

2017 (2)

S. Hettler, M. Dries, P. Hermann, M. Obermair, D. Gerthsen, and M. Malac, “Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications,” Micron 96, 38–47 (2017).
[Crossref]

L. Cognet, M. Treguer-Delapierre, and S. Link, “Biological applications of electromagnetically active nanoparticles,” J. Phys. D 50, 200201 (2017).
[Crossref]

2016 (2)

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
[Crossref]

2015 (4)

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q. H. Xu, “Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” RSC Adv. 5, 29076–29097 (2015).
[Crossref]

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H. Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17, 10861–10870 (2015).
[Crossref]

K. Q. Le, “Nanoplasmonic enhancement of molecular fluorescence: theory and numerical modeling,” Plasmonics 10, 475–482 (2015).
[Crossref]

2014 (1)

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

2013 (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

2012 (6)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris, K. H. An, W. P. Hall, and R. A. Potyrailo, “Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor,” J. Opt. Soc. Am. A 29, 994–1002 (2012).
[Crossref]

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723–10733 (2012).
[Crossref]

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275–1279 (2012).
[Crossref]

S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
[Crossref]

S. Szunerits and R. Boukherroub, “Sensing using localised surface plasmon resonance sensors,” Chem. Commun. 48, 8999–9010 (2012).
[Crossref]

2011 (6)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
[Crossref]

S. Lee, L. J. Anderson, C. M. Payne, and J. H. Hafner, “Structural transition in the surfactant layer that surrounds gold nanorods as observed by analytical surface-enhanced Raman spectroscopy,” Langmuir 27, 14748–14756 (2011).
[Crossref]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref]

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
[Crossref]

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3, 4042–4059 (2011).
[Crossref]

2010 (4)

Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near,” J. Phys. Chem. C 114, 7302–7307 (2010).
[Crossref]

S. D. Gedney and B. Zhao, “An auxiliary differential equation formulation for the complex-frequency shifted PML,” IEEE Trans. Antennas Propag. 58, 838–847 (2010).
[Crossref]

A. J. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
[Crossref]

M. W. Knight, J. Fan, F. Capasso, and N. J. Halas, “Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures,” Opt. Express 18, 2579–2587 (2010).
[Crossref]

2009 (1)

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

2008 (2)

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3, FD4–FD11 (2008).
[Crossref]

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

2007 (4)

C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays,” Biophys. J. 93, 3684–3692 (2007).
[Crossref]

G. Barbillon, J.-L. Bijeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Biological and chemical gold nanosensors based on localized surface plasmon resonance,” Gold Bull. 40, 240–244 (2007).
[Crossref]

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
[Crossref]

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75, 1–7 (2007).
[Crossref]

2006 (2)

D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307–2314 (2006).
[Crossref]

K. Abdijalilov and J. B. Schneider, “Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: lossy material and evanescent fields,” IEEE Antennas Wireless Propag. Lett. 5, 454–458 (2006).
[Crossref]

2005 (1)

J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes,” J. Phys. Chem. B 109, 14257–14261 (2005).
[Crossref]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5-40 nm diameter gold nanoparticles,” Langmuir 17, 6782–6786 (2001).
[Crossref]

2000 (1)

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27 (2000).
[Crossref]

1999 (1)

K. M. Mayer and J. H. Hafner, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[Crossref]

1994 (1)

P. Kékicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir 10, 1584–1591 (1994).
[Crossref]

Abdijalilov, K.

K. Abdijalilov and J. B. Schneider, “Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: lossy material and evanescent fields,” IEEE Antennas Wireless Propag. Lett. 5, 454–458 (2006).
[Crossref]

Adam, P. M.

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

Adam, P.-M.

A. Movsesyan, A.-L. Baudrion, and P.-M. Adam, “Extinction measurements of metallic nanoparticles arrays as a way to explore the single nanoparticle plasmon resonances,” Opt. Express 26, 6439–6445 (2018).
[Crossref]

G. Barbillon, J.-L. Bijeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Biological and chemical gold nanosensors based on localized surface plasmon resonance,” Gold Bull. 40, 240–244 (2007).
[Crossref]

An, K. H.

Anderson, L. J.

S. Lee, L. J. Anderson, C. M. Payne, and J. H. Hafner, “Structural transition in the surfactant layer that surrounds gold nanorods as observed by analytical surface-enhanced Raman spectroscopy,” Langmuir 27, 14748–14756 (2011).
[Crossref]

Baldauf, J. S.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275–1279 (2012).
[Crossref]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref]

Barbillon, G.

G. Barbillon, J.-L. Bijeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Biological and chemical gold nanosensors based on localized surface plasmon resonance,” Gold Bull. 40, 240–244 (2007).
[Crossref]

Barrow, S. J.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275–1279 (2012).
[Crossref]

Baudrion, A. L.

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

Baudrion, A.-L.

Béal, J.

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

Belitsch, M.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Bijeon, J.-L.

G. Barbillon, J.-L. Bijeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Biological and chemical gold nanosensors based on localized surface plasmon resonance,” Gold Bull. 40, 240–244 (2007).
[Crossref]

Bogdanova, M.

Boukherroub, R.

S. Szunerits and R. Boukherroub, “Sensing using localised surface plasmon resonance sensors,” Chem. Commun. 48, 8999–9010 (2012).
[Crossref]

Capasso, F.

Chaâbani, W.

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

Chehaidar, A.

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

Chen, H.

H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
[Crossref]

Chuntonov, L.

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
[Crossref]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Cognet, L.

L. Cognet, M. Treguer-Delapierre, and S. Link, “Biological applications of electromagnetically active nanoparticles,” J. Phys. D 50, 200201 (2017).
[Crossref]

Coronado, E. A.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3, 4042–4059 (2011).
[Crossref]

Cui, X.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
[Crossref]

Deinega, A.

Ditlbacher, H.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Dries, M.

S. Hettler, M. Dries, P. Hermann, M. Obermair, D. Gerthsen, and M. Malac, “Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications,” Micron 96, 38–47 (2017).
[Crossref]

Encina, E. R.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3, 4042–4059 (2011).
[Crossref]

Fan, J.

Félidj, N.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Funston, A. M.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275–1279 (2012).
[Crossref]

Gaponenko, S.

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Gaponenko, S. V.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723–10733 (2012).
[Crossref]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5-40 nm diameter gold nanoparticles,” Langmuir 17, 6782–6786 (2001).
[Crossref]

Gedney, S. D.

S. D. Gedney and B. Zhao, “An auxiliary differential equation formulation for the complex-frequency shifted PML,” IEEE Trans. Antennas Propag. 58, 838–847 (2010).
[Crossref]

Gerthsen, D.

S. Hettler, M. Dries, P. Hermann, M. Obermair, D. Gerthsen, and M. Malac, “Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications,” Micron 96, 38–47 (2017).
[Crossref]

Ghosh, S. K.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
[Crossref]

Glukhov, Y.

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Glukhov, Y. F.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723–10733 (2012).
[Crossref]

Gómez-Graña, S.

S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
[Crossref]

Griffiths, A. J.

A. J. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
[Crossref]

Grillo, I.

S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
[Crossref]

Guerrero-Martínez, A.

S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
[Crossref]

Guzatov, D.

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Guzatov, D. V.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723–10733 (2012).
[Crossref]

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75, 1–7 (2007).
[Crossref]

Häfele, V.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Hafner, J. H.

S. Lee, L. J. Anderson, C. M. Payne, and J. H. Hafner, “Structural transition in the surfactant layer that surrounds gold nanorods as observed by analytical surface-enhanced Raman spectroscopy,” Langmuir 27, 14748–14756 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[Crossref]

Halas, N. J.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref]

M. W. Knight, J. Fan, F. Capasso, and N. J. Halas, “Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures,” Opt. Express 18, 2579–2587 (2010).
[Crossref]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

Hall, W. P.

Haran, G.

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2009).

Hermann, P.

S. Hettler, M. Dries, P. Hermann, M. Obermair, D. Gerthsen, and M. Malac, “Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications,” Micron 96, 38–47 (2017).
[Crossref]

Hettler, S.

S. Hettler, M. Dries, P. Hermann, M. Obermair, D. Gerthsen, and M. Malac, “Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications,” Micron 96, 38–47 (2017).
[Crossref]

Hohenau, A.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Homola, J.

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3, FD4–FD11 (2008).
[Crossref]

Hubert, F.

S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
[Crossref]

Irudayaraj, J.

C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays,” Biophys. J. 93, 3684–3692 (2007).
[Crossref]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5-40 nm diameter gold nanoparticles,” Langmuir 17, 6782–6786 (2001).
[Crossref]

Kékicheff, P.

P. Kékicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir 10, 1584–1591 (1994).
[Crossref]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Kim, D.

Klimov, V. V.

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75, 1–7 (2007).
[Crossref]

Knight, M. W.

M. W. Knight, J. Fan, F. Capasso, and N. J. Halas, “Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures,” Opt. Express 18, 2579–2587 (2010).
[Crossref]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

Kottmann, J. P.

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27 (2000).
[Crossref]

Krenn, J. R.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Kulakovich, O.

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Kvasnicka, P.

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3, FD4–FD11 (2008).
[Crossref]

Lai, Y.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
[Crossref]

Lamy De La Chapelle, M.

G. Barbillon, J.-L. Bijeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Biological and chemical gold nanosensors based on localized surface plasmon resonance,” Gold Bull. 40, 240–244 (2007).
[Crossref]

Lassiter, J. B.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

Le, K. Q.

K. Q. Le, “Nanoplasmonic enhancement of molecular fluorescence: theory and numerical modeling,” Plasmonics 10, 475–482 (2015).
[Crossref]

Lee, S.

S. Lee, L. J. Anderson, C. M. Payne, and J. H. Hafner, “Structural transition in the surfactant layer that surrounds gold nanorods as observed by analytical surface-enhanced Raman spectroscopy,” Langmuir 27, 14748–14756 (2011).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Lin, H. Q.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
[Crossref]

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H. Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17, 10861–10870 (2015).
[Crossref]

H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
[Crossref]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Link, S.

L. Cognet, M. Treguer-Delapierre, and S. Link, “Biological applications of electromagnetically active nanoparticles,” J. Phys. D 50, 200201 (2017).
[Crossref]

Liz-Marzán, L. M.

S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
[Crossref]

J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes,” J. Phys. Chem. B 109, 14257–14261 (2005).
[Crossref]

López-Puente, V.

N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q. H. Xu, “Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” RSC Adv. 5, 29076–29097 (2015).
[Crossref]

Lozovik, Y.

Lunevich, A.

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Lunevich, A. Y.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723–10733 (2012).
[Crossref]

Ma, H.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Malac, M.

S. Hettler, M. Dries, P. Hermann, M. Obermair, D. Gerthsen, and M. Malac, “Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications,” Micron 96, 38–47 (2017).
[Crossref]

Man, Y. C.

H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
[Crossref]

Mangeney, C.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Martin, O. J.

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27 (2000).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[Crossref]

McPeak, K. M.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Ming, T.

H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
[Crossref]

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

Movsesyan, A.

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

A. Movsesyan, A.-L. Baudrion, and P.-M. Adam, “Extinction measurements of metallic nanoparticles arrays as a way to explore the single nanoparticle plasmon resonances,” Opt. Express 26, 6439–6445 (2018).
[Crossref]

Mulvaney, P.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275–1279 (2012).
[Crossref]

J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes,” J. Phys. Chem. B 109, 14257–14261 (2005).
[Crossref]

Muravitskaya, A.

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5-40 nm diameter gold nanoparticles,” Langmuir 17, 6782–6786 (2001).
[Crossref]

Nagpal, P.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Nguyen, M.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Nordlander, P.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref]

Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near,” J. Phys. Chem. C 114, 7302–7307 (2010).
[Crossref]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Norris, D. J.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2009).

Obermair, M.

S. Hettler, M. Dries, P. Hermann, M. Obermair, D. Gerthsen, and M. Malac, “Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications,” Micron 96, 38–47 (2017).
[Crossref]

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Oh, S.-H.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Pal, T.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
[Crossref]

Pastoriza-Santos, I.

N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q. H. Xu, “Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” RSC Adv. 5, 29076–29097 (2015).
[Crossref]

Payne, C. M.

S. Lee, L. J. Anderson, C. M. Payne, and J. H. Hafner, “Structural transition in the surfactant layer that surrounds gold nanorods as observed by analytical surface-enhanced Raman spectroscopy,” Langmuir 27, 14748–14756 (2011).
[Crossref]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

Pérez-Juste, J.

J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes,” J. Phys. Chem. B 109, 14257–14261 (2005).
[Crossref]

Plain, J.

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

G. Barbillon, J.-L. Bijeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Biological and chemical gold nanosensors based on localized surface plasmon resonance,” Gold Bull. 40, 240–244 (2007).
[Crossref]

Polavarapu, L.

N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q. H. Xu, “Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” RSC Adv. 5, 29076–29097 (2015).
[Crossref]

Potyrailo, R. A.

Pris, A. D.

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Proust, J.

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

Qin, F.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
[Crossref]

Ramanenka, A.

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Rodríguez-Fernández, J.

J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes,” J. Phys. Chem. B 109, 14257–14261 (2005).
[Crossref]

Royer, P.

G. Barbillon, J.-L. Bijeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Biological and chemical gold nanosensors based on localized surface plasmon resonance,” Gold Bull. 40, 240–244 (2007).
[Crossref]

Ruan, Q.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
[Crossref]

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H. Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17, 10861–10870 (2015).
[Crossref]

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Schneider, J. B.

K. Abdijalilov and J. B. Schneider, “Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: lossy material and evanescent fields,” IEEE Antennas Wireless Propag. Lett. 5, 454–458 (2006).
[Crossref]

Schultz, S.

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27 (2000).
[Crossref]

Shao, L.

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H. Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17, 10861–10870 (2015).
[Crossref]

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
[Crossref]

Shu, Y.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

Smith, D. R.

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27 (2000).
[Crossref]

Spalla, O.

S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
[Crossref]

P. Kékicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir 10, 1584–1591 (1994).
[Crossref]

Stankevich, V. V.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723–10733 (2012).
[Crossref]

Stefani, F. D.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3, 4042–4059 (2011).
[Crossref]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Szunerits, S.

S. Szunerits and R. Boukherroub, “Sensing using localised surface plasmon resonance sensors,” Chem. Commun. 48, 8999–9010 (2012).
[Crossref]

Tao, Y.

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H. Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17, 10861–10870 (2015).
[Crossref]

Testard, F.

S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
[Crossref]

Tischler, A.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Treguer-Delapierre, M.

L. Cognet, M. Treguer-Delapierre, and S. Link, “Biological applications of electromagnetically active nanoparticles,” J. Phys. D 50, 200201 (2017).
[Crossref]

Vaschenko, S.

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Vaschenko, S. V.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723–10733 (2012).
[Crossref]

Walther, T.

A. J. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
[Crossref]

Wang, H.

H. Wang, “Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations,” Sci. Rep. 8, 1–8 (2018).
[Crossref]

Wang, J.

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
[Crossref]

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H. Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17, 10861–10870 (2015).
[Crossref]

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
[Crossref]

Wang, Q.

N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q. H. Xu, “Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” RSC Adv. 5, 29076–29097 (2015).
[Crossref]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Wei, X.

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275–1279 (2012).
[Crossref]

Winkler, P.

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Woo, K. C.

H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
[Crossref]

Wu, H.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

Wu, Y.

Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near,” J. Phys. Chem. C 114, 7302–7307 (2010).
[Crossref]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref]

Xu, Q. H.

N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q. H. Xu, “Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” RSC Adv. 5, 29076–29097 (2015).
[Crossref]

Yu, C.

C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays,” Biophys. J. 93, 3684–3692 (2007).
[Crossref]

Zalyubovskiy, S. J.

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref]

Zhao, B.

S. D. Gedney and B. Zhao, “An auxiliary differential equation formulation for the complex-frequency shifted PML,” IEEE Trans. Antennas Propag. 58, 838–847 (2010).
[Crossref]

Zhou, N.

N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q. H. Xu, “Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” RSC Adv. 5, 29076–29097 (2015).
[Crossref]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

ACS Nano (2)

H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754–6763 (2011).
[Crossref]

W. Chaâbani, J. Proust, A. Movsesyan, J. Béal, A. L. Baudrion, P. M. Adam, A. Chehaidar, and J. Plain, “Large-scale and low-cost fabrication of silicon Mie resonators,” ACS Nano 13, 4199–4208 (2019).
[Crossref]

Adv. Opt. Mater. (1)

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures,” Adv. Opt. Mater. 2, 65–73 (2014).
[Crossref]

Appl. Phys. Lett. (1)

P. Winkler, M. Belitsch, A. Tischler, V. Häfele, H. Ditlbacher, J. R. Krenn, A. Hohenau, M. Nguyen, N. Félidj, and C. Mangeney, “Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes,” Appl. Phys. Lett. 107, 141906 (2015).
[Crossref]

Biointerphases (1)

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations,” Biointerphases 3, FD4–FD11 (2008).
[Crossref]

Biophys. J. (1)

C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays,” Biophys. J. 93, 3684–3692 (2007).
[Crossref]

Chem. Commun. (1)

S. Szunerits and R. Boukherroub, “Sensing using localised surface plasmon resonance sensors,” Chem. Commun. 48, 8999–9010 (2012).
[Crossref]

Chem. Rev. (2)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
[Crossref]

Gold Bull. (1)

G. Barbillon, J.-L. Bijeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Biological and chemical gold nanosensors based on localized surface plasmon resonance,” Gold Bull. 40, 240–244 (2007).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

K. Abdijalilov and J. B. Schneider, “Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: lossy material and evanescent fields,” IEEE Antennas Wireless Propag. Lett. 5, 454–458 (2006).
[Crossref]

IEEE Trans. Antennas Propag. (1)

S. D. Gedney and B. Zhao, “An auxiliary differential equation formulation for the complex-frequency shifted PML,” IEEE Trans. Antennas Propag. 58, 838–847 (2010).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. B (1)

J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes,” J. Phys. Chem. B 109, 14257–14261 (2005).
[Crossref]

J. Phys. Chem. C (2)

Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near,” J. Phys. Chem. C 114, 7302–7307 (2010).
[Crossref]

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723–10733 (2012).
[Crossref]

J. Phys. Conf. Ser. (1)

A. J. Griffiths and T. Walther, “Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning,” J. Phys. Conf. Ser. 241, 012017 (2010).
[Crossref]

J. Phys. D (1)

L. Cognet, M. Treguer-Delapierre, and S. Link, “Biological applications of electromagnetically active nanoparticles,” J. Phys. D 50, 200201 (2017).
[Crossref]

Langmuir (4)

S. Lee, L. J. Anderson, C. M. Payne, and J. H. Hafner, “Structural transition in the surfactant layer that surrounds gold nanorods as observed by analytical surface-enhanced Raman spectroscopy,” Langmuir 27, 14748–14756 (2011).
[Crossref]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5-40 nm diameter gold nanoparticles,” Langmuir 17, 6782–6786 (2001).
[Crossref]

P. Kékicheff and O. Spalla, “Refractive index of thin aqueous films confined between two hydrophobic surfaces,” Langmuir 10, 1584–1591 (1994).
[Crossref]

S. Gómez-Graña, F. Hubert, F. Testard, A. Guerrero-Martínez, I. Grillo, L. M. Liz-Marzán, and O. Spalla, “Surfactant (Bi) layers on gold nanorods,” Langmuir 28, 1453–1459 (2012).
[Crossref]

Microfluid. Nanofluid. (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

Micron (1)

S. Hettler, M. Dries, P. Hermann, M. Obermair, D. Gerthsen, and M. Malac, “Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications,” Micron 96, 38–47 (2017).
[Crossref]

Nano Lett. (4)

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011).
[Crossref]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009).
[Crossref]

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett. 11, 2440–2445 (2011).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Nanoscale (2)

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3, 4042–4059 (2011).
[Crossref]

F. Qin, X. Cui, Q. Ruan, Y. Lai, J. Wang, H. Ma, and H. Q. Lin, “Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals,” Nanoscale 8, 17645–17657 (2016).
[Crossref]

Nat. Commun. (1)

S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, “The surface plasmon modes of self-assembled gold nanocrystals,” Nat. Commun. 3, 1275–1279 (2012).
[Crossref]

Nat. Nanotechnol. (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

New J. Phys. (1)

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27 (2000).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

L. Shao, Y. Tao, Q. Ruan, J. Wang, and H. Q. Lin, “Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods,” Phys. Chem. Chem. Phys. 17, 10861–10870 (2015).
[Crossref]

Phys. Rev. B (1)

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75, 1–7 (2007).
[Crossref]

Plasmonics (1)

K. Q. Le, “Nanoplasmonic enhancement of molecular fluorescence: theory and numerical modeling,” Plasmonics 10, 475–482 (2015).
[Crossref]

Procedia Eng. (1)

S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, and S. Gaponenko, “Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids,” Procedia Eng. 140, 57–66 (2016).
[Crossref]

Rep. Prog. Phys. (1)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[Crossref]

RSC Adv. (1)

N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q. H. Xu, “Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics,” RSC Adv. 5, 29076–29097 (2015).
[Crossref]

Sci. Rep. (1)

H. Wang, “Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations,” Sci. Rep. 8, 1–8 (2018).
[Crossref]

Sens. Actuators B Chem. (1)

K. M. Mayer and J. H. Hafner, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[Crossref]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) SEM images of gold nanospheres of different diameters. (b) Dark-field image of gold nanospheres deposited on grid masked ITO substrate. Red circles show examples of presence of nanospheres. Inset shows a characterized ITO substrate by atomic force microscope (AFM) before the deposition of gold nanospheres and the calculated roughness of the substrate (RMS, root mean squared; Ra, arithmetic average).
Fig. 2.
Fig. 2. (a), (b) Scattering spectra of similar gold 180-nm-diameter nanospheres; the collection is in reflection geometry, and the numerical aperture is 0.8. (c) Simulated scattering (reflection geometry) spectrum of GNS of 180 nm diameter placed in air. (d) Simulated scattering (reflection geometry) spectrum of GNS of 180 nm diameter deposited on the ITO substrate. For numerical simulations, the numerical aperture is applied on the simulated spectrum (b). SEM image of a gold nanosphere (e) at normal and (f) at 45 deg tilted to the electron beam.
Fig. 3.
Fig. 3. Experimental scattering spectra of gold nanospheres of different diameters (180 nm, 195 nm, and 205 nm) with residual CTAB layer after one cycle of cleaning (a), (e), (i) and after complete CTAB removal due to seven cycles of cleaning (b), (f), (j) and corresponding simulated spectra (c), (b), (g), (h), (k), (l).
Fig. 4.
Fig. 4. Near-field maps of 196-nm-diameter gold nanosphere deposited on an ITO substrate for (a) mode ${{\rm Q}^\prime }$ and (b) mode ${{\rm D}^\prime }$ in absence of residual CTAB compared to covered with CTAB 10 nm layer for (c) mode Q and (d) mode D. The intensities of the maps are normalized at the same scale. Calculated averaged intensities of electric field in a zone (colored pink) of 20 nm next to the particle for (e) modes ${{\rm D}^\prime }$ and ${{\rm Q}^\prime }$ and (f) modes D and Q.
Fig. 5.
Fig. 5. (a) Calculated scattering spectra of gold 125-nm-diameter nanosphere embedded in medium with refractive index n. (b) Calculated scattering spectra of gold 125-nm-diameter nanosphere covered with 12 nm CTAB layer and embedded in medium with refractive index n. (c) Dependence of LSPR peak position on refractive index for cases (a) and (b).

Metrics