Abstract

The concept of a new compact echelle-inspired cross-grating spectrometer is introduced, and a specific optical design is presented. The new concept aims to achieve simultaneously a high spectral resolution, a wide accessible spectral range, and compact dimensions. The essential system novelty concerns the combination of different aspects: the implementation of a crossed grating comprising both the main dispersion and order separation, a folded reflective beam path, which enables a reduction of the system volume, and the introduction of a form-adjustable mirror for aberration compensation. The exemplary optical design offers a spectral bandwidth ranging from 330–1100 nm with spectral resolution better than 1.4 nm in the fourth and 0.4 nm in the 11th order. The optical setup covers a volume of 110mm×110mm×30mm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Realization of a compact cross-grating spectrometer and validating experimental tests

Matthias Kraus, Erik Förster, Verena Bagusat, Tobias Hönle, Xavier Uwurukundo, Patrick Bohnert, Robert Brüning, Hartmut Hillmer, and Robert Brunner
Appl. Opt. 59(5) 1338-1346 (2020)

Compact echelle spectrometer employing a cross-grating

Daniel Thomae, Tobias Hönle, Matthias Kraus, Verena Bagusat, Arnaud Deparnay, Robert Brüning, and Robert Brunner
Appl. Opt. 57(25) 7109-7116 (2018)

Optical design of a crossed Czerny–Turner spectrometer with a linear array photomultiplier tube

Chen Wang, He Chen, Yinchao Zhang, Siying Chen, Pan Guo, and Lifu Wang
Appl. Opt. 58(28) 7789-7794 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. I. Posudin, Practical Spectroscopy in Agriculture and Food Science (Science, 1997).
  2. Y. Ozaki, W. F. McClure, and A. A. Christy, Near-Infrared Spectroscopy in Food Science and Technology (Wiley, 2007).
  3. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express 14, 3641–3653 (2006).
    [Crossref]
  4. 2018, http://applications.zeiss.com/C125792900358A3F/0/3306374A04E03C93C1257A630054A051/$FILE/ZEISS_BR_MMS_E.pdf .
  5. 2018, https://www.avantes.com/images/productsheets/Datasheet_AvaSpec_Mini_MKII.pdf .
  6. R. Brunner, M. Burkhardt, K. Rudolf, and N. Correns, “Microspectrometer based on holographically recorded diffractive elements using supplementary holograms,” Opt. Express 16, 12239–12250 (2008).
    [Crossref]
  7. D. J. Schroeder, “Design considerations for astronomical echelle spectrographs,” Publ. Astron. Soc. Pac. 82, 1253–1275 (1970).
    [Crossref]
  8. K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
    [Crossref]
  9. R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
    [Crossref]
  10. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  11. P. N. Keliher and C. C. Wohlers, “Echelle grating spectrometers in analytical spectrometry,” Anal. Chem. 48, 140–143 (1976).
    [Crossref]
  12. T. W. Barnard, M. I. Crockett, J. C. Ivaldi, and P. L. Lundberg, “Design and evaluation of an echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
    [Crossref]
  13. M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, and S. B. Smith, “Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Anal. Chem. 44, 1613–1620 (1990).
    [Crossref]
  14. 2018, https://www.lla.de/spektrometer-kameras/echelle-spektrometer.html .
  15. 2018, http://www.tokyoinst.co.jp/en/product_file/file/AD11_cat01_en.pdf .
  16. 2018, http://www.ltb-berlin.de/en/products/spectrometers/ .
  17. M. L. Dalton, “Astigmatism compensation in the Czerny-Turner spectrometer,” Appl. Opt. 5, 1121–1123 (1966).
    [Crossref]
  18. D. Thomae, T. Hönle, M. Kraus, V. Bagusat, A. Deparnay, R. Brüning, and R. Brunner, “Compact echelle spectrometer employing a cross-grating,” Appl. Opt. 57, 7109–7116 (2018).
    [Crossref]
  19. https://www.zemax.com .
  20. V. A. Soifer, Computer Design of Diffractive Optics (CISP, 2013).
  21. T. Eversberg and K. Vollmann, Spectroscopic Instrumentation (Springer, 2015).
  22. C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).
  23. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed. (Cambridge University, 2018).
  24. J.-Ph. Perez, Optik (Spektrum Akademischer, 1996).

2018 (1)

2013 (1)

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

2008 (2)

R. Brunner, M. Burkhardt, K. Rudolf, and N. Correns, “Microspectrometer based on holographically recorded diffractive elements using supplementary holograms,” Opt. Express 16, 12239–12250 (2008).
[Crossref]

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

2006 (1)

1993 (1)

T. W. Barnard, M. I. Crockett, J. C. Ivaldi, and P. L. Lundberg, “Design and evaluation of an echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[Crossref]

1990 (1)

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, and S. B. Smith, “Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Anal. Chem. 44, 1613–1620 (1990).
[Crossref]

1976 (1)

P. N. Keliher and C. C. Wohlers, “Echelle grating spectrometers in analytical spectrometry,” Anal. Chem. 48, 140–143 (1976).
[Crossref]

1970 (1)

D. J. Schroeder, “Design considerations for astronomical echelle spectrographs,” Publ. Astron. Soc. Pac. 82, 1253–1275 (1970).
[Crossref]

1966 (1)

Andersson, M.

Bagusat, V.

Barnard, T. W.

T. W. Barnard, M. I. Crockett, J. C. Ivaldi, and P. L. Lundberg, “Design and evaluation of an echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[Crossref]

Barnstedt, J.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Becker-Roß, H.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Bernstein, R. A.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Bigelow, B. C.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Bochanski, J. J.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Brüning, R.

Brunner, R.

Burgasser, A. J.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Burkhardt, M.

Christy, A. A.

Y. Ozaki, W. F. McClure, and A. A. Christy, Near-Infrared Spectroscopy in Food Science and Technology (Wiley, 2007).

Correns, N.

Crockett, M. I.

T. W. Barnard, M. I. Crockett, J. C. Ivaldi, and P. L. Lundberg, “Design and evaluation of an echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[Crossref]

Dalton, M. L.

Denton, M. B.

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, and S. B. Smith, “Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Anal. Chem. 44, 1613–1620 (1990).
[Crossref]

Deparnay, A.

Eversberg, T.

T. Eversberg and K. Vollmann, Spectroscopic Instrumentation (Springer, 2015).

Fishner, J.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Florek, S.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Forrest, W.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Graue, R.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Gringel, W.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Hönle, T.

Ivaldi, J. C.

T. W. Barnard, M. I. Crockett, J. C. Ivaldi, and P. L. Lundberg, “Design and evaluation of an echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[Crossref]

Kampf, D.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Kappelmann, N.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Keliher, P. N.

P. N. Keliher and C. C. Wohlers, “Echelle grating spectrometers in analytical spectrometry,” Anal. Chem. 48, 140–143 (1976).
[Crossref]

Kraus, M.

Loewen, E.

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

Loewen, E. G.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Lundberg, P. L.

T. W. Barnard, M. I. Crockett, J. C. Ivaldi, and P. L. Lundberg, “Design and evaluation of an echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[Crossref]

McClure, W. F.

Y. Ozaki, W. F. McClure, and A. A. Christy, Near-Infrared Spectroscopy in Food Science and Technology (Wiley, 2007).

McMurtry, C.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Moisheev, A.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Moran, P. M.

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, and S. B. Smith, “Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Anal. Chem. 44, 1613–1620 (1990).
[Crossref]

Neumann, C.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Ozaki, Y.

Y. Ozaki, W. F. McClure, and A. A. Christy, Near-Infrared Spectroscopy in Food Science and Technology (Wiley, 2007).

Palmer, C.

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

Pedrotti, F. L.

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed. (Cambridge University, 2018).

Pedrotti, L. M.

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed. (Cambridge University, 2018).

Pedrotti, L. S.

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed. (Cambridge University, 2018).

Perez, J.-Ph.

J.-Ph. Perez, Optik (Spektrum Akademischer, 1996).

Persson, L.

Pilon, M. J.

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, and S. B. Smith, “Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Anal. Chem. 44, 1613–1620 (1990).
[Crossref]

Pipher, J. L.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Popov, E.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Posudin, Y. I.

Y. I. Posudin, Practical Spectroscopy in Agriculture and Food Science (Science, 1997).

Reutlinger, A.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Rudolf, K.

Schechter, P. L.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Schleicher, R. G.

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, and S. B. Smith, “Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Anal. Chem. 44, 1613–1620 (1990).
[Crossref]

Schroeder, D. J.

D. J. Schroeder, “Design considerations for astronomical echelle spectrographs,” Publ. Astron. Soc. Pac. 82, 1253–1275 (1970).
[Crossref]

Shustov, B.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Simcoe, R. A.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Sjöholm, M.

Skripunov, E.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Smith, M. J.

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

Smith, S. B.

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, and S. B. Smith, “Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Anal. Chem. 44, 1613–1620 (1990).
[Crossref]

Soifer, V. A.

V. A. Soifer, Computer Design of Diffractive Optics (CISP, 2013).

Svanberg, S.

Thomae, D.

Vollmann, K.

T. Eversberg and K. Vollmann, Spectroscopic Instrumentation (Springer, 2015).

Werner, K.

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Wohlers, C. C.

P. N. Keliher and C. C. Wohlers, “Echelle grating spectrometers in analytical spectrometry,” Anal. Chem. 48, 140–143 (1976).
[Crossref]

Adv. Space Res. (1)

K. Werner, J. Barnstedt, W. Gringel, N. Kappelmann, H. Becker-Roß, S. Florek, R. Graue, D. Kampf, A. Reutlinger, C. Neumann, B. Shustov, A. Moisheev, and E. Skripunov, “HIRDES–the high-resolution double-echelle spectrograph for the World space observatory ultraviolet (WSO/UV),” Adv. Space Res. 41, 1992–1997 (2008).
[Crossref]

Anal. Chem. (3)

P. N. Keliher and C. C. Wohlers, “Echelle grating spectrometers in analytical spectrometry,” Anal. Chem. 48, 140–143 (1976).
[Crossref]

T. W. Barnard, M. I. Crockett, J. C. Ivaldi, and P. L. Lundberg, “Design and evaluation of an echelle grating optical system for ICP-OES,” Anal. Chem. 65, 1225–1230 (1993).
[Crossref]

M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran, and S. B. Smith, “Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectroscopy,” Anal. Chem. 44, 1613–1620 (1990).
[Crossref]

Appl. Opt. (2)

Opt. Express (2)

Publ. Astron. Soc. Pac. (2)

R. A. Simcoe, A. J. Burgasser, P. L. Schechter, J. Fishner, R. A. Bernstein, B. C. Bigelow, J. L. Pipher, W. Forrest, C. McMurtry, M. J. Smith, and J. J. Bochanski, “FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes,” Publ. Astron. Soc. Pac. 125, 270–286 (2013).
[Crossref]

D. J. Schroeder, “Design considerations for astronomical echelle spectrographs,” Publ. Astron. Soc. Pac. 82, 1253–1275 (1970).
[Crossref]

Other (14)

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

2018, https://www.lla.de/spektrometer-kameras/echelle-spektrometer.html .

2018, http://www.tokyoinst.co.jp/en/product_file/file/AD11_cat01_en.pdf .

2018, http://www.ltb-berlin.de/en/products/spectrometers/ .

Y. I. Posudin, Practical Spectroscopy in Agriculture and Food Science (Science, 1997).

Y. Ozaki, W. F. McClure, and A. A. Christy, Near-Infrared Spectroscopy in Food Science and Technology (Wiley, 2007).

2018, http://applications.zeiss.com/C125792900358A3F/0/3306374A04E03C93C1257A630054A051/$FILE/ZEISS_BR_MMS_E.pdf .

2018, https://www.avantes.com/images/productsheets/Datasheet_AvaSpec_Mini_MKII.pdf .

https://www.zemax.com .

V. A. Soifer, Computer Design of Diffractive Optics (CISP, 2013).

T. Eversberg and K. Vollmann, Spectroscopic Instrumentation (Springer, 2015).

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed. (Cambridge University, 2018).

J.-Ph. Perez, Optik (Spektrum Akademischer, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Optical layout in the y - z cross section with ray trace for the fourth order showing the dispersion by the echelle-type grating. The insets show a schematic representation of the crossed grating profile and the two-dimensional spectral image at the detection plan.
Fig. 2.
Fig. 2. Optical design layout in the x - y cross section with the ray trace for both the central wavelengths at all orders (a) to illustrate the effect of the cross-dispersion grating and (b) the chief ray for 765 nm in the fifth order highlighting the Littrow configuration and the planar integration of the whole setup.
Fig. 3.
Fig. 3. Simulated image of the whole detector plane showing the diffraction orders four to 11 and the spectral sampling points for the optimization.
Fig. 4.
Fig. 4. Calculated diffraction efficiencies for (a) the third to 11th order of the main grating, (b) the zeroth to second order of the cross-dispersion grating, (c) and the third to 11th order of the cross grating. The resulting overall efficiency is calculated by multiplying the efficiency of the first cross-dispersion order with the third to 11th order of the main grating and dividing the results with the reflectance of an aluminum mirror. A summarized efficiency (resulting efficiency of the third to 11th order) is shown by the black curve with circle markers (c), representing the measurable signal on the detector.
Fig. 5.
Fig. 5. Spot diagrams of the central wavelength (a) 765 nm in the fifth order and (b) one at an edge position at 1100 nm in the fourth order before correction by the cylindrical mirror. The effect of correction is shown in (c) and (d) for the central and edge wavelength, respectively. The corresponding RMS spot size radii are (a) 37.5 μm, (b) 61.6 μm, (c) 14.2 μm, and (d) 42.5 μm.
Fig. 6.
Fig. 6. Achievable spectral resolution of the complete setup for the main diffraction orders four to 11 in comparison to the theoretical maximum limited by the pinhole size ( Δ λ 5 ). The resolution of each order varies between the best case at the respective central wavelength positions [ Δ λ system (central)] and the worst case at the edge positions, denoted as [ Δ λ system (wave1)].

Tables (3)

Tables Icon

Table 1. Mechanical Dimensions and Optical Parameters for the Optical System Comprising the Mirrors and the Grating for a Pupil Size of 10.2 mm

Tables Icon

Table 2. Maximum and Minimum Detectable Wavelengths and Respective Spectral Bandwidth for the Cross Grating

Tables Icon

Table 3. Calculation of the Various Broadening Functions Defining the Overall Spectral Resolution λ system

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ζ m x = ζ 0 + λ m x d x , ξ m y = ξ 0 + λ m y d y χ m x m y = 1 ζ m x 2 ξ m y 2 .
η = η x η y R .
h b = d tan Θ b ,
m λ b = d [ sin Θ i + sin ( 2 Θ b Θ i ) ] .
Δ λ i = Δ X i D L 1 .
Δ λ system = i = 1 Δ λ i 2 .
ϒ = A f foc f col ,

Metrics