Abstract

The incidence of melanoma in children is extremely rare. However, there is convincing evidence supporting a higher risk of developing melanoma in individuals who have experienced excessive sun exposure during their childhood. A possible explanation for this phenomenon is that prior to puberty, the melanocyte stem cells in the bulge region of hair follicles are much shallower in the dermis, resulting in their increased vulnerability to sun exposure. To validate this hypothesis, a Monte Carlo simulation of light transport is applied to quantify the dose of solar UV power absorbed in the stem-cell layers at different depths in both child and adult skins. The simulated results suggest that the stem cells in vellus hair follicles would absorb over 250 times higher UV photons than those in the terminal hair follicles. Due to the thinner epidermis in child skin, the stem cells in vellus hair follicles absorb about 1.9 and 3.2 times greater ultraviolet A and ultraviolet B, respectively, than those in adult skin. These findings provide a possible explanation to why children are particularly vulnerable to sun exposure.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs

Niels Møller Israelsen, Michael Maria, Mette Mogensen, Sophie Bojesen, Mikkel Jensen, Merete Haedersdal, Adrian Podoleanu, and Ole Bang
Biomed. Opt. Express 9(5) 2240-2265 (2018)

Biophysical basis of skin cancer margin assessment using Raman spectroscopy

Xu Feng, Matthew C. Fox, Jason S. Reichenberg, Fabiana C. P. S. Lopes, Katherine R. Sebastian, Mia K. Markey, and James W. Tunnell
Biomed. Opt. Express 10(1) 104-118 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription