Abstract

Correction and manipulation of peripheral refractive errors are indispensable for people with central vision loss and in optical interventions for myopia control. This study investigates further enhancements of peripheral vision by compensating for monochromatic higher-order aberrations (with an adaptive optics system) and chromatic aberrations (with a narrowband green filter, 550 nm) in the 20° nasal visual field. Both high-contrast detection cutoff and contrast sensitivity improved with optical correction. This improvement was most evident for gratings oriented perpendicular to the meridian due to asymmetric optical errors. When the natural monochromatic higher-order aberrations are large, resolution of 10% contrast oblique gratings can also be improved with correction of these errors. Though peripheral vision is mainly limited by refractive errors and neural factors, higher-order aberration correction beyond conventional refractive errors can still improve peripheral vision under certain circumstances.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of induced transverse chromatic aberration on peripheral vision

Simon Winter, Mohammad Taghi Fathi, Abinaya Priya Venkataraman, Robert Rosén, Anne Seidemann, Gregor Esser, Linda Lundström, and Peter Unsbo
J. Opt. Soc. Am. A 32(10) 1764-1771 (2015)

Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye

Linda Lundström, Silvestre Manzanera, Pedro M. Prieto, Diego B. Ayala, Nicolas Gorceix, Jörgen Gustafsson, Peter Unsbo, and Pablo Artal
Opt. Express 15(20) 12654-12661 (2007)

Visual performance after correcting the monochromatic and chromatic aberrations of the eye

Geun-Young Yoon and David R. Williams
J. Opt. Soc. Am. A 19(2) 266-275 (2002)

References

  • View by:
  • |
  • |
  • |

  1. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
    [Crossref]
  2. L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
    [Crossref]
  3. L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vis. Res. 36, 249–258 (1996).
    [Crossref]
  4. D. R. Williams and N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514–1523 (1987).
    [Crossref]
  5. Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).
  6. R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
    [Crossref]
  7. K. Baskaran, R. Rosén, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
    [Crossref]
  8. L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vis. Sci. 84, 1046–1052 (2007).
    [Crossref]
  9. J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
    [Crossref]
  10. World Health Organization, The Impact of Myopia and High Myopia: Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia (University of New South Wales, 2015).
  11. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
    [Crossref]
  12. A. Mathur and D. A. Atchison, “Peripheral refraction patterns out to large field angles,” Optom. Vis. Sci. 90, 140–147 (2013).
    [Crossref]
  13. L. Lundström and R. Rosén, “Peripheral aberrations,” in Handbook of Visual Optics, Volume One: Fundamentals and Eye Optics, P. Artal, ed., 1st ed. (CRC Press, 2017), Chap. 21.
  14. P. Lewis, A. P. Venkataraman, and L. Lundström, “Contrast sensitivity in eyes with central scotoma: effect of stimulus drift,” Optom. Vis. Sci. 95, 354–361 (2018).
    [Crossref]
  15. D. A. Atchison, A. Mathur, and S. R. Varnas, “Visual performance with lenses correcting peripheral refractive errors,” Optom. Vis. Sci. 90, 1304–1311 (2013).
    [Crossref]
  16. P. Lewis, K. Baskaran, R. Rosén, L. Lundström, P. Unsbo, and J. Gustafsson, “Objectively determined refraction improves peripheral vision,” Optom. Vis. Sci. 91, 740–746 (2014).
    [Crossref]
  17. D. A. Atchison, “The Glenn A. fry award lecture 2011: peripheral optics of the human eye,” Optom. Vis. Sci. 89, E954–E966 (2012).
    [Crossref]
  18. L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
    [Crossref]
  19. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
    [Crossref]
  20. S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
    [Crossref]
  21. F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiolog. Opt. 35, 70–80 (2015).
    [Crossref]
  22. A. P. Venkataraman, S. Winter, R. Rosén, and L. Lundström, “Choice of grating orientation for evaluation of peripheral vision,” Optom. Vis. Sci. 93, 567–574 (2016).
    [Crossref]
  23. M. S. Banks, A. B. Sekuler, and S. J. Anderson, “Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling,” J. Opt. Soc. Am. A 8, 1775–1787 (1991).
    [Crossref]
  24. J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvärinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).
  25. L. Zheleznyak, A. Barbot, A. Ghosh, and G. Yoon, “Optical and neural anisotropy in peripheral vision,” J. Vis. 16(5), 1–11 (2016).
    [Crossref]
  26. Y. L. Yap, D. M. Levi, and S. A. Klein, “Peripheral hyperacuity: isocentric bisection is better than radial bisection,” J. Opt. Soc. Am. A 4, 1562–1567 (1987).
    [Crossref]
  27. R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
    [Crossref]
  28. S. Winter, M. T. Fathi, A. P. Venkataraman, R. Rosén, A. Seidemann, G. Esser, L. Lundström, and P. Unsbo, “Effect of induced transverse chromatic aberration on peripheral vision,” J. Opt. Soc. Am. A 32, 1764–1771 (2015).
    [Crossref]
  29. L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vis. Res. 39, 2729–2737 (1999).
    [Crossref]
  30. D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10, 433–436 (1997).
    [Crossref]
  31. C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
    [Crossref]
  32. G. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
    [Crossref]
  33. N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refractive Surg. 33, 1296–1302 (2007).
    [Crossref]
  34. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2017).
    [Crossref]
  35. R. Rosén, B. Jaeken, A. Lindskoog Petterson, P. Artal, P. Unsbo, and L. Lundström, “Evaluating the peripheral optical effect of multifocal contact lenses,” Ophthalmic Physiolog. Opt. 32, 527–534 (2012).
    [Crossref]
  36. Q. Ji, Y. Yoo, H. Alam, and G. Yoon, “Through-focus optical characteristics of monofocal and bifocal soft contact lenses across the peripheral visual field,” Ophthalmic Physiolog. Opt. 38, 326–336 (2018).
    [Crossref]

2018 (2)

P. Lewis, A. P. Venkataraman, and L. Lundström, “Contrast sensitivity in eyes with central scotoma: effect of stimulus drift,” Optom. Vis. Sci. 95, 354–361 (2018).
[Crossref]

Q. Ji, Y. Yoo, H. Alam, and G. Yoon, “Through-focus optical characteristics of monofocal and bifocal soft contact lenses across the peripheral visual field,” Ophthalmic Physiolog. Opt. 38, 326–336 (2018).
[Crossref]

2017 (1)

2016 (4)

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
[Crossref]

A. P. Venkataraman, S. Winter, R. Rosén, and L. Lundström, “Choice of grating orientation for evaluation of peripheral vision,” Optom. Vis. Sci. 93, 567–574 (2016).
[Crossref]

L. Zheleznyak, A. Barbot, A. Ghosh, and G. Yoon, “Optical and neural anisotropy in peripheral vision,” J. Vis. 16(5), 1–11 (2016).
[Crossref]

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

2015 (2)

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiolog. Opt. 35, 70–80 (2015).
[Crossref]

S. Winter, M. T. Fathi, A. P. Venkataraman, R. Rosén, A. Seidemann, G. Esser, L. Lundström, and P. Unsbo, “Effect of induced transverse chromatic aberration on peripheral vision,” J. Opt. Soc. Am. A 32, 1764–1771 (2015).
[Crossref]

2014 (2)

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
[Crossref]

P. Lewis, K. Baskaran, R. Rosén, L. Lundström, P. Unsbo, and J. Gustafsson, “Objectively determined refraction improves peripheral vision,” Optom. Vis. Sci. 91, 740–746 (2014).
[Crossref]

2013 (2)

D. A. Atchison, A. Mathur, and S. R. Varnas, “Visual performance with lenses correcting peripheral refractive errors,” Optom. Vis. Sci. 90, 1304–1311 (2013).
[Crossref]

A. Mathur and D. A. Atchison, “Peripheral refraction patterns out to large field angles,” Optom. Vis. Sci. 90, 140–147 (2013).
[Crossref]

2012 (4)

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

R. Rosén, B. Jaeken, A. Lindskoog Petterson, P. Artal, P. Unsbo, and L. Lundström, “Evaluating the peripheral optical effect of multifocal contact lenses,” Ophthalmic Physiolog. Opt. 32, 527–534 (2012).
[Crossref]

D. A. Atchison, “The Glenn A. fry award lecture 2011: peripheral optics of the human eye,” Optom. Vis. Sci. 89, E954–E966 (2012).
[Crossref]

K. Baskaran, R. Rosén, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

2011 (1)

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

2009 (1)

2007 (3)

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vis. Sci. 84, 1046–1052 (2007).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
[Crossref]

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refractive Surg. 33, 1296–1302 (2007).
[Crossref]

2006 (1)

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[Crossref]

2002 (1)

1999 (1)

L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vis. Res. 39, 2729–2737 (1999).
[Crossref]

1997 (2)

D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10, 433–436 (1997).
[Crossref]

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

1996 (1)

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vis. Res. 36, 249–258 (1996).
[Crossref]

1991 (1)

1987 (4)

1982 (1)

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvärinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

Alam, H.

Q. Ji, Y. Yoo, H. Alam, and G. Yoon, “Through-focus optical characteristics of monofocal and bifocal soft contact lenses across the peripheral visual field,” Ophthalmic Physiolog. Opt. 38, 326–336 (2018).
[Crossref]

Anderson, S. J.

Artal, P.

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2017).
[Crossref]

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
[Crossref]

R. Rosén, B. Jaeken, A. Lindskoog Petterson, P. Artal, P. Unsbo, and L. Lundström, “Evaluating the peripheral optical effect of multifocal contact lenses,” Ophthalmic Physiolog. Opt. 32, 527–534 (2012).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
[Crossref]

Atchison, D. A.

A. Mathur and D. A. Atchison, “Peripheral refraction patterns out to large field angles,” Optom. Vis. Sci. 90, 140–147 (2013).
[Crossref]

D. A. Atchison, A. Mathur, and S. R. Varnas, “Visual performance with lenses correcting peripheral refractive errors,” Optom. Vis. Sci. 90, 1304–1311 (2013).
[Crossref]

D. A. Atchison, “The Glenn A. fry award lecture 2011: peripheral optics of the human eye,” Optom. Vis. Sci. 89, E954–E966 (2012).
[Crossref]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[Crossref]

Ayala, D. B.

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
[Crossref]

Banks, M. S.

Bao, F.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Barbot, A.

L. Zheleznyak, A. Barbot, A. Ghosh, and G. Yoon, “Optical and neural anisotropy in peripheral vision,” J. Vis. 16(5), 1–11 (2016).
[Crossref]

Baskaran, K.

P. Lewis, K. Baskaran, R. Rosén, L. Lundström, P. Unsbo, and J. Gustafsson, “Objectively determined refraction improves peripheral vision,” Optom. Vis. Sci. 91, 740–746 (2014).
[Crossref]

K. Baskaran, R. Rosén, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

Bedell, H. E.

Benny, Y.

Bradley, A.

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiolog. Opt. 35, 70–80 (2015).
[Crossref]

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vis. Res. 36, 249–258 (1996).
[Crossref]

Brainard, D. H.

D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10, 433–436 (1997).
[Crossref]

Canovas, C.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
[Crossref]

Chen, H.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Cheney, F. E.

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiolog. Opt. 35, 70–80 (2015).
[Crossref]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[Crossref]

Coletta, N. J.

Du, Y.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Esser, G.

Fathi, M. T.

Flitcroft, I.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Gao, R.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Ghosh, A.

L. Zheleznyak, A. Barbot, A. Ghosh, and G. Yoon, “Optical and neural anisotropy in peripheral vision,” J. Vis. 16(5), 1–11 (2016).
[Crossref]

Gustafsson, J.

P. Lewis, K. Baskaran, R. Rosén, L. Lundström, P. Unsbo, and J. Gustafsson, “Objectively determined refraction improves peripheral vision,” Optom. Vis. Sci. 91, 740–746 (2014).
[Crossref]

K. Baskaran, R. Rosén, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vis. Sci. 84, 1046–1052 (2007).
[Crossref]

Hu, L.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Huang, J.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Hyvärinen, L.

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvärinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

Jaeken, B.

R. Rosén, B. Jaeken, A. Lindskoog Petterson, P. Artal, P. Unsbo, and L. Lundström, “Evaluating the peripheral optical effect of multifocal contact lenses,” Ophthalmic Physiolog. Opt. 32, 527–534 (2012).
[Crossref]

Ji, Q.

Q. Ji, Y. Yoo, H. Alam, and G. Yoon, “Through-focus optical characteristics of monofocal and bifocal soft contact lenses across the peripheral visual field,” Ophthalmic Physiolog. Opt. 38, 326–336 (2018).
[Crossref]

Jiang, Q.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Jinag, Z.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Klein, S. A.

Kontsevich, L. L.

L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vis. Res. 39, 2729–2737 (1999).
[Crossref]

Laurinen, P.

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvärinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

Levi, D. M.

Lewis, P.

P. Lewis, A. P. Venkataraman, and L. Lundström, “Contrast sensitivity in eyes with central scotoma: effect of stimulus drift,” Optom. Vis. Sci. 95, 354–361 (2018).
[Crossref]

P. Lewis, K. Baskaran, R. Rosén, L. Lundström, P. Unsbo, and J. Gustafsson, “Objectively determined refraction improves peripheral vision,” Optom. Vis. Sci. 91, 740–746 (2014).
[Crossref]

K. Baskaran, R. Rosén, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

Li, X.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Lian, H.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Lindskoog Petterson, A.

R. Rosén, B. Jaeken, A. Lindskoog Petterson, P. Artal, P. Unsbo, and L. Lundström, “Evaluating the peripheral optical effect of multifocal contact lenses,” Ophthalmic Physiolog. Opt. 32, 527–534 (2012).
[Crossref]

López-Gil, N.

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refractive Surg. 33, 1296–1302 (2007).
[Crossref]

Lu, W.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Lundström, L.

P. Lewis, A. P. Venkataraman, and L. Lundström, “Contrast sensitivity in eyes with central scotoma: effect of stimulus drift,” Optom. Vis. Sci. 95, 354–361 (2018).
[Crossref]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
[Crossref]

A. P. Venkataraman, S. Winter, R. Rosén, and L. Lundström, “Choice of grating orientation for evaluation of peripheral vision,” Optom. Vis. Sci. 93, 567–574 (2016).
[Crossref]

S. Winter, M. T. Fathi, A. P. Venkataraman, R. Rosén, A. Seidemann, G. Esser, L. Lundström, and P. Unsbo, “Effect of induced transverse chromatic aberration on peripheral vision,” J. Opt. Soc. Am. A 32, 1764–1771 (2015).
[Crossref]

P. Lewis, K. Baskaran, R. Rosén, L. Lundström, P. Unsbo, and J. Gustafsson, “Objectively determined refraction improves peripheral vision,” Optom. Vis. Sci. 91, 740–746 (2014).
[Crossref]

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

R. Rosén, B. Jaeken, A. Lindskoog Petterson, P. Artal, P. Unsbo, and L. Lundström, “Evaluating the peripheral optical effect of multifocal contact lenses,” Ophthalmic Physiolog. Opt. 32, 527–534 (2012).
[Crossref]

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vis. Sci. 84, 1046–1052 (2007).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
[Crossref]

L. Lundström and R. Rosén, “Peripheral aberrations,” in Handbook of Visual Optics, Volume One: Fundamentals and Eye Optics, P. Artal, ed., 1st ed. (CRC Press, 2017), Chap. 21.

Manzanera, S.

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2017).
[Crossref]

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
[Crossref]

Mathur, A.

A. Mathur and D. A. Atchison, “Peripheral refraction patterns out to large field angles,” Optom. Vis. Sci. 90, 140–147 (2013).
[Crossref]

D. A. Atchison, A. Mathur, and S. R. Varnas, “Visual performance with lenses correcting peripheral refractive errors,” Optom. Vis. Sci. 90, 1304–1311 (2013).
[Crossref]

McAlinden, C.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Montés-Micó, R.

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refractive Surg. 33, 1296–1302 (2007).
[Crossref]

Ogboso, Y. U.

Piers, P.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
[Crossref]

Prieto, P. M.

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2017).
[Crossref]

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
[Crossref]

Pritchard, N.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[Crossref]

Privitera, C.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
[Crossref]

Qu, J.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Ribak, E. N.

Roorda, A.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
[Crossref]

Rosén, R.

A. P. Venkataraman, S. Winter, R. Rosén, and L. Lundström, “Choice of grating orientation for evaluation of peripheral vision,” Optom. Vis. Sci. 93, 567–574 (2016).
[Crossref]

S. Winter, M. T. Fathi, A. P. Venkataraman, R. Rosén, A. Seidemann, G. Esser, L. Lundström, and P. Unsbo, “Effect of induced transverse chromatic aberration on peripheral vision,” J. Opt. Soc. Am. A 32, 1764–1771 (2015).
[Crossref]

P. Lewis, K. Baskaran, R. Rosén, L. Lundström, P. Unsbo, and J. Gustafsson, “Objectively determined refraction improves peripheral vision,” Optom. Vis. Sci. 91, 740–746 (2014).
[Crossref]

K. Baskaran, R. Rosén, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

R. Rosén, B. Jaeken, A. Lindskoog Petterson, P. Artal, P. Unsbo, and L. Lundström, “Evaluating the peripheral optical effect of multifocal contact lenses,” Ophthalmic Physiolog. Opt. 32, 527–534 (2012).
[Crossref]

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

L. Lundström and R. Rosén, “Peripheral aberrations,” in Handbook of Visual Optics, Volume One: Fundamentals and Eye Optics, P. Artal, ed., 1st ed. (CRC Press, 2017), Chap. 21.

Rovamo, J.

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvärinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

Sabesan, R.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
[Crossref]

Saw, S. M.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Schmid, K. L.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[Crossref]

Schwarz, C.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
[Crossref]

Seidemann, A.

Sekuler, A. B.

Still, D. L.

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vis. Res. 36, 249–258 (1996).
[Crossref]

Thibos, L. N.

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiolog. Opt. 35, 70–80 (2015).
[Crossref]

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vis. Res. 36, 249–258 (1996).
[Crossref]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[Crossref]

Tiruveedhula, P.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
[Crossref]

Tyler, C. W.

L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vis. Res. 39, 2729–2737 (1999).
[Crossref]

Unsbo, P.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
[Crossref]

S. Winter, M. T. Fathi, A. P. Venkataraman, R. Rosén, A. Seidemann, G. Esser, L. Lundström, and P. Unsbo, “Effect of induced transverse chromatic aberration on peripheral vision,” J. Opt. Soc. Am. A 32, 1764–1771 (2015).
[Crossref]

P. Lewis, K. Baskaran, R. Rosén, L. Lundström, P. Unsbo, and J. Gustafsson, “Objectively determined refraction improves peripheral vision,” Optom. Vis. Sci. 91, 740–746 (2014).
[Crossref]

K. Baskaran, R. Rosén, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

R. Rosén, B. Jaeken, A. Lindskoog Petterson, P. Artal, P. Unsbo, and L. Lundström, “Evaluating the peripheral optical effect of multifocal contact lenses,” Ophthalmic Physiolog. Opt. 32, 527–534 (2012).
[Crossref]

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vis. Sci. 84, 1046–1052 (2007).
[Crossref]

Varnas, S. R.

D. A. Atchison, A. Mathur, and S. R. Varnas, “Visual performance with lenses correcting peripheral refractive errors,” Optom. Vis. Sci. 90, 1304–1311 (2013).
[Crossref]

Venkataraman, A. P.

P. Lewis, A. P. Venkataraman, and L. Lundström, “Contrast sensitivity in eyes with central scotoma: effect of stimulus drift,” Optom. Vis. Sci. 95, 354–361 (2018).
[Crossref]

A. P. Venkataraman, S. Winter, R. Rosén, and L. Lundström, “Choice of grating orientation for evaluation of peripheral vision,” Optom. Vis. Sci. 93, 567–574 (2016).
[Crossref]

S. Winter, M. T. Fathi, A. P. Venkataraman, R. Rosén, A. Seidemann, G. Esser, L. Lundström, and P. Unsbo, “Effect of induced transverse chromatic aberration on peripheral vision,” J. Opt. Soc. Am. A 32, 1764–1771 (2015).
[Crossref]

Virsu, V.

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvärinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

Walsh, D. J.

Wang, Q.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Wang, Y. Z.

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

Weeber, H.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
[Crossref]

Wen, D.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Williams, D. R.

Winter, S.

A. P. Venkataraman, S. Winter, R. Rosén, and L. Lundström, “Choice of grating orientation for evaluation of peripheral vision,” Optom. Vis. Sci. 93, 567–574 (2016).
[Crossref]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
[Crossref]

S. Winter, M. T. Fathi, A. P. Venkataraman, R. Rosén, A. Seidemann, G. Esser, L. Lundström, and P. Unsbo, “Effect of induced transverse chromatic aberration on peripheral vision,” J. Opt. Soc. Am. A 32, 1764–1771 (2015).
[Crossref]

Yap, Y. L.

Yoo, Y.

Q. Ji, Y. Yoo, H. Alam, and G. Yoon, “Through-focus optical characteristics of monofocal and bifocal soft contact lenses across the peripheral visual field,” Ophthalmic Physiolog. Opt. 38, 326–336 (2018).
[Crossref]

Yoon, G.

Q. Ji, Y. Yoo, H. Alam, and G. Yoon, “Through-focus optical characteristics of monofocal and bifocal soft contact lenses across the peripheral visual field,” Ophthalmic Physiolog. Opt. 38, 326–336 (2018).
[Crossref]

L. Zheleznyak, A. Barbot, A. Ghosh, and G. Yoon, “Optical and neural anisotropy in peripheral vision,” J. Vis. 16(5), 1–11 (2016).
[Crossref]

G. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
[Crossref]

Yu, A.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Yu, Y.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Zhao, Y.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Zheleznyak, L.

L. Zheleznyak, A. Barbot, A. Ghosh, and G. Yoon, “Optical and neural anisotropy in peripheral vision,” J. Vis. 16(5), 1–11 (2016).
[Crossref]

Invest. Ophthalmol. Visual Sci. (3)

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52, 318–323 (2011).
[Crossref]

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvärinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

J. Cataract Refractive Surg. (1)

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refractive Surg. 33, 1296–1302 (2007).
[Crossref]

J. Mod. Opt. (1)

R. Rosén, L. Lundström, and P. Unsbo, “Adaptive optics for peripheral vision,” J. Mod. Opt. 59, 1064–1070 (2012).
[Crossref]

J. Opt. Soc. Am. A (9)

S. Winter, M. T. Fathi, A. P. Venkataraman, R. Rosén, A. Seidemann, G. Esser, L. Lundström, and P. Unsbo, “Effect of induced transverse chromatic aberration on peripheral vision,” J. Opt. Soc. Am. A 32, 1764–1771 (2015).
[Crossref]

Y. L. Yap, D. M. Levi, and S. A. Klein, “Peripheral hyperacuity: isocentric bisection is better than radial bisection,” J. Opt. Soc. Am. A 4, 1562–1567 (1987).
[Crossref]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2017).
[Crossref]

M. S. Banks, A. B. Sekuler, and S. J. Anderson, “Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling,” J. Opt. Soc. Am. A 8, 1775–1787 (1991).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[Crossref]

Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
[Crossref]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[Crossref]

D. R. Williams and N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514–1523 (1987).
[Crossref]

G. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
[Crossref]

J. Vis. (3)

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8 (2014).
[Crossref]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14):9 (2016).
[Crossref]

L. Zheleznyak, A. Barbot, A. Ghosh, and G. Yoon, “Optical and neural anisotropy in peripheral vision,” J. Vis. 16(5), 1–11 (2016).
[Crossref]

Ophthalmic Physiolog. Opt. (3)

F. E. Cheney, L. N. Thibos, and A. Bradley, “Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision,” Ophthalmic Physiolog. Opt. 35, 70–80 (2015).
[Crossref]

R. Rosén, B. Jaeken, A. Lindskoog Petterson, P. Artal, P. Unsbo, and L. Lundström, “Evaluating the peripheral optical effect of multifocal contact lenses,” Ophthalmic Physiolog. Opt. 32, 527–534 (2012).
[Crossref]

Q. Ji, Y. Yoo, H. Alam, and G. Yoon, “Through-focus optical characteristics of monofocal and bifocal soft contact lenses across the peripheral visual field,” Ophthalmic Physiolog. Opt. 38, 326–336 (2018).
[Crossref]

Ophthalmology (1)

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis,” Ophthalmology 123, 697–708 (2016).
[Crossref]

Opt. Express (1)

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 1357–1362 (2007).
[Crossref]

Optom. Vis. Sci. (8)

K. Baskaran, R. Rosén, P. Lewis, P. Unsbo, and J. Gustafsson, “Benefit of adaptive optics aberration correction at preferred retinal locus,” Optom. Vis. Sci. 89, 1417–1423 (2012).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vis. Sci. 84, 1046–1052 (2007).
[Crossref]

A. Mathur and D. A. Atchison, “Peripheral refraction patterns out to large field angles,” Optom. Vis. Sci. 90, 140–147 (2013).
[Crossref]

P. Lewis, A. P. Venkataraman, and L. Lundström, “Contrast sensitivity in eyes with central scotoma: effect of stimulus drift,” Optom. Vis. Sci. 95, 354–361 (2018).
[Crossref]

D. A. Atchison, A. Mathur, and S. R. Varnas, “Visual performance with lenses correcting peripheral refractive errors,” Optom. Vis. Sci. 90, 1304–1311 (2013).
[Crossref]

P. Lewis, K. Baskaran, R. Rosén, L. Lundström, P. Unsbo, and J. Gustafsson, “Objectively determined refraction improves peripheral vision,” Optom. Vis. Sci. 91, 740–746 (2014).
[Crossref]

D. A. Atchison, “The Glenn A. fry award lecture 2011: peripheral optics of the human eye,” Optom. Vis. Sci. 89, E954–E966 (2012).
[Crossref]

A. P. Venkataraman, S. Winter, R. Rosén, and L. Lundström, “Choice of grating orientation for evaluation of peripheral vision,” Optom. Vis. Sci. 93, 567–574 (2016).
[Crossref]

Spat. Vis. (1)

D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10, 433–436 (1997).
[Crossref]

Vis. Res. (2)

L. L. Kontsevich and C. W. Tyler, “Bayesian adaptive estimation of psychometric slope and threshold,” Vis. Res. 39, 2729–2737 (1999).
[Crossref]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vis. Res. 36, 249–258 (1996).
[Crossref]

Vision Res. (1)

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[Crossref]

Other (2)

L. Lundström and R. Rosén, “Peripheral aberrations,” in Handbook of Visual Optics, Volume One: Fundamentals and Eye Optics, P. Artal, ed., 1st ed. (CRC Press, 2017), Chap. 21.

World Health Organization, The Impact of Myopia and High Myopia: Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia (University of New South Wales, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. High-contrast detection acuity cutoffs in logMAR for parallel and perpendicular gratings for subjects S1 and S2. Each measurement is marked with a filled circle, and the bars represent the average of the three repetitions for each optical condition. Ref-W and Ref-G denote refractive sphere and cylinder correction with psychophysics performed in white and green light, respectively; AO-W and AO-G denote full adaptive optics correction of the monochromatic aberrations with psychophysics performed in white and green light, respectively.
Fig. 2.
Fig. 2. Peripheral contrast sensitivity functions for Gabor gratings oriented perpendicular to and parallel with the 20° nasal visual field as measured on an emmetropic subject, S1, and a myopic subject, S2. Each repetition is represented by a circular marker, and the lines connect the average values. The cutoff values are plotted from the detection acuities from Fig. 1. The four correction levels, i.e., Ref-W, Ref-G, AO-W, and AO-G, are the same as described in Fig. 1 (Ref, dashed lines and unfilled circles; AO, solid lines and filled circles; W, black lines and circles; G, green lines and circles).
Fig. 3.
Fig. 3. Peripheral low-contrast (10%) resolution acuity cutoffs in logMAR for oblique Gabor gratings oriented to the left and right in the 20° nasal visual field of subjects S2–S7. The four correction levels, i.e., Ref-W, Ref-G, AO-W, and AO-G, are the same as described in Fig. 1. Each measurement is marked with a filled circle, and the bars represent the average of the three repetitions for each optical condition.

Tables (2)

Tables Icon

Table 1. Improvements in logCS Values, as Shown in Fig. 2, from First Level of Correction to Final Level of Correction (Ref-W versus AO-G) for Parallel and Perpendicular Gratings

Tables Icon

Table 2. Time-Average Monochromatic Modulation Transfer Function and Pupil Radius in the 20° Nasal Visual Field for Subjects S2–S7 during the Low-Contrast Resolution Tests Presented in Fig. 3

Metrics