Abstract

As ocular chromatic aberration was suspected to cue contrast adaptation in human vision, the purpose of this study was to investigate contrast adaptation under monochromatic light conditions. Single and complex frequency adaptation stimuli were used, and monochromatic conditions were achieved using band pass filters with short (470±2nm), medium (530±2nm), and long (630±2nm) transmission wavelengths. Post-adaptational contrast sensitivity was shown to be significantly decreased for all wavelength conditions for the single frequency stimulus. A significant difference of contrast adaptation between short and long wavelengths was found. Consistently, adaptation led to a significant decrease in contrast sensitivity for the complex frequency stimulus. To conclude, contrast adaptation under mesopic illumination occurs independently of the longitudinal chromatic aberration of the eye; it can be inferred that this mechanism can be used to distinguish between the sign of optical defocus in poly- and monochromatic light conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Impact of longitudinal chromatic aberration on through-focus visual acuity

Nikolai Suchkov, Enrique J. Fernández, and Pablo Artal
Opt. Express 27(24) 35935-35947 (2019)

Optics of the eye and its impact in vision: a tutorial

Pablo Artal
Adv. Opt. Photon. 6(3) 340-367 (2014)

Spectral bandwidth and ocular accommodation

Karan R. Aggarwala, Ekaterina S. Kruger, Steven Mathews, and Philip B. Kruger
J. Opt. Soc. Am. A 12(3) 450-455 (1995)

References

  • View by:
  • |
  • |
  • |

  1. F. Schaeffel, “Contrast adaptation,” in Handbook of Visual Optics, P. Artal, ed. (CRC Press, Taylor & Francis, 2004).
  2. R. M. Shapley and J. D. Victor, “The effect of contrast on the transfer properties of cat retinal ganglion cells,” J. Physiol. 285, 275–298 (1978).
    [Crossref]
  3. C. Blakemore and F. W. Campbell, “Adaptation to spatial stimuli,” J. Physiol. 200, 11–13 (1969).
  4. J. M. Foley and G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vis. Res. 33, 959–980 (1993).
    [Crossref]
  5. M. A. Georgeson and M. G. Harris, “Spatial selectivity of contrast adaptation: models and data,” Vis. Res. 24, 729–741 (1984).
    [Crossref]
  6. M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
    [Crossref]
  7. S. T. Hammett, R. J. Snowden, and A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vis. Res. 34, 31–40 (1994).
    [Crossref]
  8. C. R. Sharpe and D. J. Tolhurst, “Orientation and spatial frequency channels in peripheral vision,” Vis. Res. 13, 2103–2112 (1973).
    [Crossref]
  9. D. J. Tolhurst and L. P. Barfield, “Interactions between spatial frequency channels,” Vis. Res. 18, 951–958 (1978).
    [Crossref]
  10. D. W. Williams, H. R. Wilson, and J. D. Cowan, “Localized effects of spatial frequency adaptation,” J. Opt. Soc. Am. 72, 878–887 (1982).
    [Crossref]
  11. C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).
    [Crossref]
  12. S. W. Habtegiorgis, K. Rifai, M. Lappe, and S. Wahl, “Adaptation to skew distortions of natural scenes and retinal specificity of its aftereffects,” Front. Psych. 8, 1158 (2017).
    [Crossref]
  13. A. Werner, “The spatial tuning of chromatic adaptation,” Vis. Res. 43, 1611–1623 (2003).
    [Crossref]
  14. A. Ohlendorf and F. Schaeffel, “Contrast adaptation induced by defocus—a possible error signal for emmetropization?” Vis. Res. 49, 249–256 (2009).
    [Crossref]
  15. P. Artal, E. J. Chen, L. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
    [Crossref]
  16. K. Pesudovs and N. A. Brennan, “Decreased uncorrected vision after a period of distance fixation with spectacle wear,” Optometry Vis. Sci. 70, 528–531 (1993).
    [Crossref]
  17. M. Rosenfield, S. E. Hong, and S. George, “Blur adaptation in myopes,” Optometry Vis. Sci. 81, 657–662 (2004).
    [Crossref]
  18. M. Vinas, L. Sawides, P. De Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7, e46361 (2012).
    [Crossref]
  19. M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
    [Crossref]
  20. A. Ohlendorf, J. Tabernero, and F. Schaeffel, “Neuronal adaptation to simulated and optically-induced astigmatic defocus,” Vis. Res. 51, 529–534 (2011).
    [Crossref]
  21. L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12):22, 1–22 (2010).
    [Crossref]
  22. G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiolog. Opt. 9, 398–404 (1989).
    [Crossref]
  23. M. Mon-Williams, J. R. Tresilian, N. C. Strang, P. Kochhar, and J. P. Wann, “Improving vision: neural compensation for optical defocus,” Proc. R. Soc. B 265, 71–77 (1998).
  24. N. Rajeev and A. Metha, “Enhanced contrast sensitivity confirms active compensation in blur adaptation,” Invest. Ophthalmol. Visual Sci. 51, 1242–1246 (2010).
    [Crossref]
  25. A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: contrast sensitivity changes and stimulus extent,” Vis. Res. 110, 100–106 (2015).
    [Crossref]
  26. M. A. Webster, “Contrast sensitivity under natural states of adaptation,” in Human Vision and Electronic Imaging IV (International Society for Optics and Photonics, 1999), Vol. 3644, pp. 58–71.
  27. S. Diether and F. Schaeffel, “Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia?” Vis. Res. 39, 2499–2510 (1999).
    [Crossref]
  28. S. Diether, F. Gekeler, and F. Schaeffel, “Changes in contrast sensitivity induced by defocus and their possible relations to emmetropization in the chicken,” Invest. Ophthalmol. Visual Sci. 42, 3072–3079 (2001).
  29. T. S. Heinrich and M. Bach, “Contrast adaptation in retinal and cortical evoked potentials: no adaptation to low spatial frequencies,” Vis. Neurosci. 19, 645–650 (2002).
    [Crossref]
  30. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
    [Crossref]
  31. A. J. Fischer, J. J. McGuire, F. Schaeffel, and W. K. Stell, “Light- and focus-dependent expression of the transcription factor ZENK in the chick retina,” Nat. Neurosci. 2, 706–712 (1999).
    [Crossref]
  32. W.-C. Ho, O.-Y. Wong, Y.-C. Chan, S.-W. Wong, C.-S. Kee, and H. H. Chan, “Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye,” Vis. Res. 52, 47–53 (2012).
    [Crossref]
  33. F. Schaeffel and S. Diether, “The growing eye: an autofocus system that works on very poor images,” Vis. Res. 39, 1585–1589 (1999).
    [Crossref]
  34. Y. Le Grand, Optique physiologique: La dioptrique de l’oeil et sa correction (Springer, 1964).
  35. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
    [Crossref]
  36. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [Crossref]
  37. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6, 948–962 (2015).
    [Crossref]
  38. D. H. Brainard, “The psychophysics toolbox,” Spatial Vis. 10, 433–436 (1997).
    [Crossref]
  39. M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard, “What’s new in Psychtoolbox-3,” Perception 36, 1–16 (2007).
    [Crossref]
  40. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442(1997).
    [Crossref]
  41. N. C. Strang, D. A. Atchison, and R. L. Woods, “Effects of defocus and pupil size on human contrast sensitivity,” Ophthalmic Physiolog. Opt. 19, 415–426 (1999).
    [Crossref]
  42. A. Werner, L. T. Sharpe, and E. Zrenner, “Asymmetries in the time-course of chromatic adaptation and the significance of contrast,” Vis. Res. 40, 1101–1113 (2000).
    [Crossref]
  43. T. Schilling, A. Ohlendorf, A. Leube, and S. Wahl, “Tuebingencstest—a useful method to assess the contrast sensitivity function,” Biomed. Opt. Express 8, 1477–1487 (2017).
    [Crossref]
  44. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
    [Crossref]
  45. A. Ohlendorf, C. Kraft, A. Leube, and S. Wahl, “Swipecsf—fast and accurate measurement of the contrast sensitivity function,” Invest. Ophthalmol. Visual Sci. 59, 1276 (2018).
  46. D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-effects models using lme4,” J. Stat. Softw. 67, 1 (2015).
    [Crossref]
  47. R. H. Baayen, D. J. Davidson, and D. M. Bates, “Mixed-effects modeling with crossed random effects for subjects and items,” J. Mem. Lang. 59, 390–412 (2008).
    [Crossref]
  48. K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2010).
  49. R. J. Snowden and S. T. Hammett, “Spatial frequency adaptation: threshold elevation and perceived contrast,” Vis. Res. 36, 1797–1809 (1996).
    [Crossref]
  50. S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
    [Crossref]
  51. A. Leube, S. Kostial, G. A. Ochakovski, A. Ohlendorf, and S. Wahl, “Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions,” Vis. Res. 143, 52–57 (2018).
    [Crossref]
  52. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
    [Crossref]
  53. A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
    [Crossref]
  54. A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [Crossref]
  55. A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
    [Crossref]
  56. A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vis. Res. 42, 2409–2417 (2002).
    [Crossref]
  57. C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vis. Res. 33, 1593–1603 (1993).
    [Crossref]
  58. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
    [Crossref]
  59. A. Pantle and R. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
    [Crossref]
  60. M. W. Greenlee and S. Magnussen, “Interactions among spatial frequency and orientation channels adapted concurrently,” Vis. Res. 28, 1303–1310 (1988).
    [Crossref]
  61. K. K. D. Valois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vis. Res. 17, 1057–1065 (1977).
    [Crossref]
  62. M. A. Webster and E. Miyahara, “Contrast adaptation and the spatial structure of natural images,” J. Opt. Soc. Am. A 14, 2355–2366 (1997).
    [Crossref]
  63. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
    [Crossref]
  64. H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Unequal reduction in visual acuity with positive and negative defocusing lenses in myopes,” Optometry Vis. Sci. 81, 14–17 (2004).
    [Crossref]
  65. H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes,” Vis. Res. 44, 1869–1878 (2004).
    [Crossref]

2018 (2)

A. Ohlendorf, C. Kraft, A. Leube, and S. Wahl, “Swipecsf—fast and accurate measurement of the contrast sensitivity function,” Invest. Ophthalmol. Visual Sci. 59, 1276 (2018).

A. Leube, S. Kostial, G. A. Ochakovski, A. Ohlendorf, and S. Wahl, “Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions,” Vis. Res. 143, 52–57 (2018).
[Crossref]

2017 (2)

T. Schilling, A. Ohlendorf, A. Leube, and S. Wahl, “Tuebingencstest—a useful method to assess the contrast sensitivity function,” Biomed. Opt. Express 8, 1477–1487 (2017).
[Crossref]

S. W. Habtegiorgis, K. Rifai, M. Lappe, and S. Wahl, “Adaptation to skew distortions of natural scenes and retinal specificity of its aftereffects,” Front. Psych. 8, 1158 (2017).
[Crossref]

2015 (3)

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: contrast sensitivity changes and stimulus extent,” Vis. Res. 110, 100–106 (2015).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6, 948–962 (2015).
[Crossref]

D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-effects models using lme4,” J. Stat. Softw. 67, 1 (2015).
[Crossref]

2013 (1)

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
[Crossref]

2012 (2)

W.-C. Ho, O.-Y. Wong, Y.-C. Chan, S.-W. Wong, C.-S. Kee, and H. H. Chan, “Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye,” Vis. Res. 52, 47–53 (2012).
[Crossref]

M. Vinas, L. Sawides, P. De Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7, e46361 (2012).
[Crossref]

2011 (1)

A. Ohlendorf, J. Tabernero, and F. Schaeffel, “Neuronal adaptation to simulated and optically-induced astigmatic defocus,” Vis. Res. 51, 529–534 (2011).
[Crossref]

2010 (2)

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12):22, 1–22 (2010).
[Crossref]

N. Rajeev and A. Metha, “Enhanced contrast sensitivity confirms active compensation in blur adaptation,” Invest. Ophthalmol. Visual Sci. 51, 1242–1246 (2010).
[Crossref]

2009 (1)

A. Ohlendorf and F. Schaeffel, “Contrast adaptation induced by defocus—a possible error signal for emmetropization?” Vis. Res. 49, 249–256 (2009).
[Crossref]

2008 (1)

R. H. Baayen, D. J. Davidson, and D. M. Bates, “Mixed-effects modeling with crossed random effects for subjects and items,” J. Mem. Lang. 59, 390–412 (2008).
[Crossref]

2007 (1)

M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard, “What’s new in Psychtoolbox-3,” Perception 36, 1–16 (2007).
[Crossref]

2006 (1)

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
[Crossref]

2004 (5)

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Unequal reduction in visual acuity with positive and negative defocusing lenses in myopes,” Optometry Vis. Sci. 81, 14–17 (2004).
[Crossref]

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes,” Vis. Res. 44, 1869–1878 (2004).
[Crossref]

P. Artal, E. J. Chen, L. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

M. Rosenfield, S. E. Hong, and S. George, “Blur adaptation in myopes,” Optometry Vis. Sci. 81, 657–662 (2004).
[Crossref]

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[Crossref]

2003 (1)

A. Werner, “The spatial tuning of chromatic adaptation,” Vis. Res. 43, 1611–1623 (2003).
[Crossref]

2002 (2)

T. S. Heinrich and M. Bach, “Contrast adaptation in retinal and cortical evoked potentials: no adaptation to low spatial frequencies,” Vis. Neurosci. 19, 645–650 (2002).
[Crossref]

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vis. Res. 42, 2409–2417 (2002).
[Crossref]

2001 (1)

S. Diether, F. Gekeler, and F. Schaeffel, “Changes in contrast sensitivity induced by defocus and their possible relations to emmetropization in the chicken,” Invest. Ophthalmol. Visual Sci. 42, 3072–3079 (2001).

2000 (1)

A. Werner, L. T. Sharpe, and E. Zrenner, “Asymmetries in the time-course of chromatic adaptation and the significance of contrast,” Vis. Res. 40, 1101–1113 (2000).
[Crossref]

1999 (6)

N. C. Strang, D. A. Atchison, and R. L. Woods, “Effects of defocus and pupil size on human contrast sensitivity,” Ophthalmic Physiolog. Opt. 19, 415–426 (1999).
[Crossref]

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[Crossref]

A. J. Fischer, J. J. McGuire, F. Schaeffel, and W. K. Stell, “Light- and focus-dependent expression of the transcription factor ZENK in the chick retina,” Nat. Neurosci. 2, 706–712 (1999).
[Crossref]

F. Schaeffel and S. Diether, “The growing eye: an autofocus system that works on very poor images,” Vis. Res. 39, 1585–1589 (1999).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[Crossref]

S. Diether and F. Schaeffel, “Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia?” Vis. Res. 39, 2499–2510 (1999).
[Crossref]

1998 (1)

M. Mon-Williams, J. R. Tresilian, N. C. Strang, P. Kochhar, and J. P. Wann, “Improving vision: neural compensation for optical defocus,” Proc. R. Soc. B 265, 71–77 (1998).

1997 (3)

M. A. Webster and E. Miyahara, “Contrast adaptation and the spatial structure of natural images,” J. Opt. Soc. Am. A 14, 2355–2366 (1997).
[Crossref]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442(1997).
[Crossref]

D. H. Brainard, “The psychophysics toolbox,” Spatial Vis. 10, 433–436 (1997).
[Crossref]

1996 (1)

R. J. Snowden and S. T. Hammett, “Spatial frequency adaptation: threshold elevation and perceived contrast,” Vis. Res. 36, 1797–1809 (1996).
[Crossref]

1994 (1)

S. T. Hammett, R. J. Snowden, and A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vis. Res. 34, 31–40 (1994).
[Crossref]

1993 (4)

J. M. Foley and G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vis. Res. 33, 959–980 (1993).
[Crossref]

K. Pesudovs and N. A. Brennan, “Decreased uncorrected vision after a period of distance fixation with spectacle wear,” Optometry Vis. Sci. 70, 528–531 (1993).
[Crossref]

A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[Crossref]

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vis. Res. 33, 1593–1603 (1993).
[Crossref]

1992 (1)

1991 (2)

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[Crossref]

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[Crossref]

1989 (1)

G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiolog. Opt. 9, 398–404 (1989).
[Crossref]

1988 (1)

M. W. Greenlee and S. Magnussen, “Interactions among spatial frequency and orientation channels adapted concurrently,” Vis. Res. 28, 1303–1310 (1988).
[Crossref]

1987 (1)

1985 (1)

S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
[Crossref]

1984 (1)

M. A. Georgeson and M. G. Harris, “Spatial selectivity of contrast adaptation: models and data,” Vis. Res. 24, 729–741 (1984).
[Crossref]

1982 (1)

1978 (2)

R. M. Shapley and J. D. Victor, “The effect of contrast on the transfer properties of cat retinal ganglion cells,” J. Physiol. 285, 275–298 (1978).
[Crossref]

D. J. Tolhurst and L. P. Barfield, “Interactions between spatial frequency channels,” Vis. Res. 18, 951–958 (1978).
[Crossref]

1977 (1)

K. K. D. Valois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vis. Res. 17, 1057–1065 (1977).
[Crossref]

1973 (1)

C. R. Sharpe and D. J. Tolhurst, “Orientation and spatial frequency channels in peripheral vision,” Vis. Res. 13, 2103–2112 (1973).
[Crossref]

1971 (1)

C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).
[Crossref]

1969 (2)

C. Blakemore and F. W. Campbell, “Adaptation to spatial stimuli,” J. Physiol. 200, 11–13 (1969).

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
[Crossref]

1968 (2)

A. Pantle and R. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
[Crossref]

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
[Crossref]

Allen, K. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[Crossref]

Anderson, D. R.

K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2010).

Artal, P.

P. Artal, E. J. Chen, L. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

Atchison, D. A.

N. C. Strang, D. A. Atchison, and R. L. Woods, “Effects of defocus and pupil size on human contrast sensitivity,” Ophthalmic Physiolog. Opt. 19, 415–426 (1999).
[Crossref]

Baayen, R. H.

R. H. Baayen, D. J. Davidson, and D. M. Bates, “Mixed-effects modeling with crossed random effects for subjects and items,” J. Mem. Lang. 59, 390–412 (2008).
[Crossref]

Bach, M.

T. S. Heinrich and M. Bach, “Contrast adaptation in retinal and cortical evoked potentials: no adaptation to low spatial frequencies,” Vis. Neurosci. 19, 645–650 (2002).
[Crossref]

Barfield, L. P.

D. J. Tolhurst and L. P. Barfield, “Interactions between spatial frequency channels,” Vis. Res. 18, 951–958 (1978).
[Crossref]

Bates, D.

D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-effects models using lme4,” J. Stat. Softw. 67, 1 (2015).
[Crossref]

Bates, D. M.

R. H. Baayen, D. J. Davidson, and D. M. Bates, “Mixed-effects modeling with crossed random effects for subjects and items,” J. Mem. Lang. 59, 390–412 (2008).
[Crossref]

Blakemore, C.

C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).
[Crossref]

C. Blakemore and F. W. Campbell, “Adaptation to spatial stimuli,” J. Physiol. 200, 11–13 (1969).

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
[Crossref]

Bolker, B.

D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-effects models using lme4,” J. Stat. Softw. 67, 1 (2015).
[Crossref]

Boynton, G. M.

J. M. Foley and G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vis. Res. 33, 959–980 (1993).
[Crossref]

Bradley, A.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12):22, 1–22 (2010).
[Crossref]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[Crossref]

Brainard, D.

M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard, “What’s new in Psychtoolbox-3,” Perception 36, 1–16 (2007).
[Crossref]

Brainard, D. H.

D. H. Brainard, “The psychophysics toolbox,” Spatial Vis. 10, 433–436 (1997).
[Crossref]

Brennan, N. A.

K. Pesudovs and N. A. Brennan, “Decreased uncorrected vision after a period of distance fixation with spectacle wear,” Optometry Vis. Sci. 70, 528–531 (1993).
[Crossref]

Broussard, C.

M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard, “What’s new in Psychtoolbox-3,” Perception 36, 1–16 (2007).
[Crossref]

Burnham, K. P.

K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2010).

Burns, S. A.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[Crossref]

Calver, R. I.

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Unequal reduction in visual acuity with positive and negative defocusing lenses in myopes,” Optometry Vis. Sci. 81, 14–17 (2004).
[Crossref]

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes,” Vis. Res. 44, 1869–1878 (2004).
[Crossref]

Campbell, F. W.

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
[Crossref]

C. Blakemore and F. W. Campbell, “Adaptation to spatial stimuli,” J. Physiol. 200, 11–13 (1969).

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
[Crossref]

Chan, H. H.

W.-C. Ho, O.-Y. Wong, Y.-C. Chan, S.-W. Wong, C.-S. Kee, and H. H. Chan, “Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye,” Vis. Res. 52, 47–53 (2012).
[Crossref]

Chan, Y.-C.

W.-C. Ho, O.-Y. Wong, Y.-C. Chan, S.-W. Wong, C.-S. Kee, and H. H. Chan, “Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye,” Vis. Res. 52, 47–53 (2012).
[Crossref]

Charman, W. N.

G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiolog. Opt. 9, 398–404 (1989).
[Crossref]

Chen, E. J.

P. Artal, E. J. Chen, L. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

Cortes, D.

Cowan, J. D.

Curcio, C. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[Crossref]

Davidson, D. J.

R. H. Baayen, D. J. Davidson, and D. M. Bates, “Mixed-effects modeling with crossed random effects for subjects and items,” J. Mem. Lang. 59, 390–412 (2008).
[Crossref]

de Gracia, P.

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
[Crossref]

M. Vinas, L. Sawides, P. De Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7, e46361 (2012).
[Crossref]

Dick, K.

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vis. Res. 33, 1593–1603 (1993).
[Crossref]

Diether, S.

S. Diether, F. Gekeler, and F. Schaeffel, “Changes in contrast sensitivity induced by defocus and their possible relations to emmetropization in the chicken,” Invest. Ophthalmol. Visual Sci. 42, 3072–3079 (2001).

S. Diether and F. Schaeffel, “Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia?” Vis. Res. 39, 2499–2510 (1999).
[Crossref]

F. Schaeffel and S. Diether, “The growing eye: an autofocus system that works on very poor images,” Vis. Res. 39, 1585–1589 (1999).
[Crossref]

Dorronsoro, C.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6, 948–962 (2015).
[Crossref]

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
[Crossref]

Fach, C.

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[Crossref]

Falconer, S.

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vis. Res. 33, 1593–1603 (1993).
[Crossref]

Fernández, L.

P. Artal, E. J. Chen, L. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

Field, D. J.

Fischer, A. J.

A. J. Fischer, J. J. McGuire, F. Schaeffel, and W. K. Stell, “Light- and focus-dependent expression of the transcription factor ZENK in the chick retina,” Nat. Neurosci. 2, 706–712 (1999).
[Crossref]

Foley, J. M.

J. M. Foley and G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vis. Res. 33, 959–980 (1993).
[Crossref]

Gekeler, F.

S. Diether, F. Gekeler, and F. Schaeffel, “Changes in contrast sensitivity induced by defocus and their possible relations to emmetropization in the chicken,” Invest. Ophthalmol. Visual Sci. 42, 3072–3079 (2001).

George, S.

M. Rosenfield, S. E. Hong, and S. George, “Blur adaptation in myopes,” Optometry Vis. Sci. 81, 657–662 (2004).
[Crossref]

Georgeson, M. A.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[Crossref]

M. A. Georgeson and M. G. Harris, “Spatial selectivity of contrast adaptation: models and data,” Vis. Res. 24, 729–741 (1984).
[Crossref]

Greenlee, M. W.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[Crossref]

M. W. Greenlee and S. Magnussen, “Interactions among spatial frequency and orientation channels adapted concurrently,” Vis. Res. 28, 1303–1310 (1988).
[Crossref]

S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
[Crossref]

Habtegiorgis, S. W.

S. W. Habtegiorgis, K. Rifai, M. Lappe, and S. Wahl, “Adaptation to skew distortions of natural scenes and retinal specificity of its aftereffects,” Front. Psych. 8, 1158 (2017).
[Crossref]

Hammett, S. T.

R. J. Snowden and S. T. Hammett, “Spatial frequency adaptation: threshold elevation and perceived contrast,” Vis. Res. 36, 1797–1809 (1996).
[Crossref]

S. T. Hammett, R. J. Snowden, and A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vis. Res. 34, 31–40 (1994).
[Crossref]

Harris, J. P.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[Crossref]

Harris, M. G.

M. A. Georgeson and M. G. Harris, “Spatial selectivity of contrast adaptation: models and data,” Vis. Res. 24, 729–741 (1984).
[Crossref]

Heinrich, T. S.

T. S. Heinrich and M. Bach, “Contrast adaptation in retinal and cortical evoked potentials: no adaptation to low spatial frequencies,” Vis. Neurosci. 19, 645–650 (2002).
[Crossref]

Hernández, M.

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
[Crossref]

Ho, W.-C.

W.-C. Ho, O.-Y. Wong, Y.-C. Chan, S.-W. Wong, C.-S. Kee, and H. H. Chan, “Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye,” Vis. Res. 52, 47–53 (2012).
[Crossref]

Hong, S. E.

M. Rosenfield, S. E. Hong, and S. George, “Blur adaptation in myopes,” Optometry Vis. Sci. 81, 657–662 (2004).
[Crossref]

Howland, H. C.

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vis. Res. 33, 1593–1603 (1993).
[Crossref]

Hurley, J. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[Crossref]

Ingling, A.

M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard, “What’s new in Psychtoolbox-3,” Perception 36, 1–16 (2007).
[Crossref]

Johnson, N. E.

Kee, C.-S.

W.-C. Ho, O.-Y. Wong, Y.-C. Chan, S.-W. Wong, C.-S. Kee, and H. H. Chan, “Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye,” Vis. Res. 52, 47–53 (2012).
[Crossref]

Kleiner, M.

M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard, “What’s new in Psychtoolbox-3,” Perception 36, 1–16 (2007).
[Crossref]

Klock, I. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[Crossref]

Kochhar, P.

M. Mon-Williams, J. R. Tresilian, N. C. Strang, P. Kochhar, and J. P. Wann, “Improving vision: neural compensation for optical defocus,” Proc. R. Soc. B 265, 71–77 (1998).

Kostial, S.

A. Leube, S. Kostial, G. A. Ochakovski, A. Ohlendorf, and S. Wahl, “Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions,” Vis. Res. 143, 52–57 (2018).
[Crossref]

Kraft, C.

A. Ohlendorf, C. Kraft, A. Leube, and S. Wahl, “Swipecsf—fast and accurate measurement of the contrast sensitivity function,” Invest. Ophthalmol. Visual Sci. 59, 1276 (2018).

Lappe, M.

S. W. Habtegiorgis, K. Rifai, M. Lappe, and S. Wahl, “Adaptation to skew distortions of natural scenes and retinal specificity of its aftereffects,” Front. Psych. 8, 1158 (2017).
[Crossref]

Le Grand, Y.

Y. Le Grand, Optique physiologique: La dioptrique de l’oeil et sa correction (Springer, 1964).

Lerea, C. L.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[Crossref]

Leube, A.

A. Leube, S. Kostial, G. A. Ochakovski, A. Ohlendorf, and S. Wahl, “Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions,” Vis. Res. 143, 52–57 (2018).
[Crossref]

A. Ohlendorf, C. Kraft, A. Leube, and S. Wahl, “Swipecsf—fast and accurate measurement of the contrast sensitivity function,” Invest. Ophthalmol. Visual Sci. 59, 1276 (2018).

T. Schilling, A. Ohlendorf, A. Leube, and S. Wahl, “Tuebingencstest—a useful method to assess the contrast sensitivity function,” Biomed. Opt. Express 8, 1477–1487 (2017).
[Crossref]

Lundström, L.

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: contrast sensitivity changes and stimulus extent,” Vis. Res. 110, 100–106 (2015).
[Crossref]

Mächler, M.

D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-effects models using lme4,” J. Stat. Softw. 67, 1 (2015).
[Crossref]

MacLeod, D. I.

Magnussen, S.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[Crossref]

M. W. Greenlee and S. Magnussen, “Interactions among spatial frequency and orientation channels adapted concurrently,” Vis. Res. 28, 1303–1310 (1988).
[Crossref]

S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
[Crossref]

Manzanera, S.

P. Artal, E. J. Chen, L. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

Marcos, S.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6, 948–962 (2015).
[Crossref]

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
[Crossref]

M. Vinas, L. Sawides, P. De Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7, e46361 (2012).
[Crossref]

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12):22, 1–22 (2010).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[Crossref]

Marin, G.

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
[Crossref]

McGuire, J. J.

A. J. Fischer, J. J. McGuire, F. Schaeffel, and W. K. Stell, “Light- and focus-dependent expression of the transcription factor ZENK in the chick retina,” Nat. Neurosci. 2, 706–712 (1999).
[Crossref]

Metha, A.

N. Rajeev and A. Metha, “Enhanced contrast sensitivity confirms active compensation in blur adaptation,” Invest. Ophthalmol. Visual Sci. 51, 1242–1246 (2010).
[Crossref]

Milam, A. H.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[Crossref]

Miyahara, E.

Mon-Williams, M.

M. Mon-Williams, J. R. Tresilian, N. C. Strang, P. Kochhar, and J. P. Wann, “Improving vision: neural compensation for optical defocus,” Proc. R. Soc. B 265, 71–77 (1998).

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[Crossref]

Murray, R.

M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard, “What’s new in Psychtoolbox-3,” Perception 36, 1–16 (2007).
[Crossref]

Nachmias, J.

C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).
[Crossref]

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[Crossref]

O’Leary, D. J.

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Unequal reduction in visual acuity with positive and negative defocusing lenses in myopes,” Optometry Vis. Sci. 81, 14–17 (2004).
[Crossref]

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes,” Vis. Res. 44, 1869–1878 (2004).
[Crossref]

Ochakovski, G. A.

A. Leube, S. Kostial, G. A. Ochakovski, A. Ohlendorf, and S. Wahl, “Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions,” Vis. Res. 143, 52–57 (2018).
[Crossref]

Ohlendorf, A.

A. Leube, S. Kostial, G. A. Ochakovski, A. Ohlendorf, and S. Wahl, “Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions,” Vis. Res. 143, 52–57 (2018).
[Crossref]

A. Ohlendorf, C. Kraft, A. Leube, and S. Wahl, “Swipecsf—fast and accurate measurement of the contrast sensitivity function,” Invest. Ophthalmol. Visual Sci. 59, 1276 (2018).

T. Schilling, A. Ohlendorf, A. Leube, and S. Wahl, “Tuebingencstest—a useful method to assess the contrast sensitivity function,” Biomed. Opt. Express 8, 1477–1487 (2017).
[Crossref]

A. Ohlendorf, J. Tabernero, and F. Schaeffel, “Neuronal adaptation to simulated and optically-induced astigmatic defocus,” Vis. Res. 51, 529–534 (2011).
[Crossref]

A. Ohlendorf and F. Schaeffel, “Contrast adaptation induced by defocus—a possible error signal for emmetropization?” Vis. Res. 49, 249–256 (2009).
[Crossref]

Pantle, A.

A. Pantle and R. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
[Crossref]

Pardhan, S.

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes,” Vis. Res. 44, 1869–1878 (2004).
[Crossref]

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Unequal reduction in visual acuity with positive and negative defocusing lenses in myopes,” Optometry Vis. Sci. 81, 14–17 (2004).
[Crossref]

Pascual, D.

Pelli, D.

M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard, “What’s new in Psychtoolbox-3,” Perception 36, 1–16 (2007).
[Crossref]

Pelli, D. G.

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442(1997).
[Crossref]

Pesudovs, K.

K. Pesudovs and N. A. Brennan, “Decreased uncorrected vision after a period of distance fixation with spectacle wear,” Optometry Vis. Sci. 70, 528–531 (1993).
[Crossref]

Radhakrishnan, H.

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes,” Vis. Res. 44, 1869–1878 (2004).
[Crossref]

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Unequal reduction in visual acuity with positive and negative defocusing lenses in myopes,” Optometry Vis. Sci. 81, 14–17 (2004).
[Crossref]

Rajeev, N.

N. Rajeev and A. Metha, “Enhanced contrast sensitivity confirms active compensation in blur adaptation,” Invest. Ophthalmol. Visual Sci. 51, 1242–1246 (2010).
[Crossref]

Ravikumar, S.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12):22, 1–22 (2010).
[Crossref]

Rifai, K.

S. W. Habtegiorgis, K. Rifai, M. Lappe, and S. Wahl, “Adaptation to skew distortions of natural scenes and retinal specificity of its aftereffects,” Front. Psych. 8, 1158 (2017).
[Crossref]

Robson, J. G.

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
[Crossref]

Rosenfield, M.

M. Rosenfield, S. E. Hong, and S. George, “Blur adaptation in myopes,” Optometry Vis. Sci. 81, 657–662 (2004).
[Crossref]

Sawides, L.

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
[Crossref]

M. Vinas, L. Sawides, P. De Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7, e46361 (2012).
[Crossref]

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12):22, 1–22 (2010).
[Crossref]

Schaeffel, F.

A. Ohlendorf, J. Tabernero, and F. Schaeffel, “Neuronal adaptation to simulated and optically-induced astigmatic defocus,” Vis. Res. 51, 529–534 (2011).
[Crossref]

A. Ohlendorf and F. Schaeffel, “Contrast adaptation induced by defocus—a possible error signal for emmetropization?” Vis. Res. 49, 249–256 (2009).
[Crossref]

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vis. Res. 42, 2409–2417 (2002).
[Crossref]

S. Diether, F. Gekeler, and F. Schaeffel, “Changes in contrast sensitivity induced by defocus and their possible relations to emmetropization in the chicken,” Invest. Ophthalmol. Visual Sci. 42, 3072–3079 (2001).

S. Diether and F. Schaeffel, “Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia?” Vis. Res. 39, 2499–2510 (1999).
[Crossref]

A. J. Fischer, J. J. McGuire, F. Schaeffel, and W. K. Stell, “Light- and focus-dependent expression of the transcription factor ZENK in the chick retina,” Nat. Neurosci. 2, 706–712 (1999).
[Crossref]

F. Schaeffel and S. Diether, “The growing eye: an autofocus system that works on very poor images,” Vis. Res. 39, 1585–1589 (1999).
[Crossref]

F. Schaeffel, “Contrast adaptation,” in Handbook of Visual Optics, P. Artal, ed. (CRC Press, Taylor & Francis, 2004).

Schilling, T.

Seidemann, A.

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vis. Res. 42, 2409–2417 (2002).
[Crossref]

Sekuler, R.

A. Pantle and R. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
[Crossref]

Shapley, R. M.

R. M. Shapley and J. D. Victor, “The effect of contrast on the transfer properties of cat retinal ganglion cells,” J. Physiol. 285, 275–298 (1978).
[Crossref]

Sharpe, C. R.

C. R. Sharpe and D. J. Tolhurst, “Orientation and spatial frequency channels in peripheral vision,” Vis. Res. 13, 2103–2112 (1973).
[Crossref]

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
[Crossref]

A. Werner, L. T. Sharpe, and E. Zrenner, “Asymmetries in the time-course of chromatic adaptation and the significance of contrast,” Vis. Res. 40, 1101–1113 (2000).
[Crossref]

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[Crossref]

Singer, B.

P. Artal, E. J. Chen, L. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

Sloan, K. R.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[Crossref]

Smith, A. T.

S. T. Hammett, R. J. Snowden, and A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vis. Res. 34, 31–40 (1994).
[Crossref]

Snowden, R. J.

R. J. Snowden and S. T. Hammett, “Spatial frequency adaptation: threshold elevation and perceived contrast,” Vis. Res. 36, 1797–1809 (1996).
[Crossref]

S. T. Hammett, R. J. Snowden, and A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vis. Res. 34, 31–40 (1994).
[Crossref]

Stell, W. K.

A. J. Fischer, J. J. McGuire, F. Schaeffel, and W. K. Stell, “Light- and focus-dependent expression of the transcription factor ZENK in the chick retina,” Nat. Neurosci. 2, 706–712 (1999).
[Crossref]

Stockman, A.

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
[Crossref]

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[Crossref]

A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[Crossref]

Strang, N. C.

N. C. Strang, D. A. Atchison, and R. L. Woods, “Effects of defocus and pupil size on human contrast sensitivity,” Ophthalmic Physiolog. Opt. 19, 415–426 (1999).
[Crossref]

M. Mon-Williams, J. R. Tresilian, N. C. Strang, P. Kochhar, and J. P. Wann, “Improving vision: neural compensation for optical defocus,” Proc. R. Soc. B 265, 71–77 (1998).

Tabernero, J.

A. Ohlendorf, J. Tabernero, and F. Schaeffel, “Neuronal adaptation to simulated and optically-induced astigmatic defocus,” Vis. Res. 51, 529–534 (2011).
[Crossref]

Thibos, L.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12):22, 1–22 (2010).
[Crossref]

Thibos, L. N.

Tolhurst, D. J.

D. J. Tolhurst and L. P. Barfield, “Interactions between spatial frequency channels,” Vis. Res. 18, 951–958 (1978).
[Crossref]

C. R. Sharpe and D. J. Tolhurst, “Orientation and spatial frequency channels in peripheral vision,” Vis. Res. 13, 2103–2112 (1973).
[Crossref]

Tresilian, J. R.

M. Mon-Williams, J. R. Tresilian, N. C. Strang, P. Kochhar, and J. P. Wann, “Improving vision: neural compensation for optical defocus,” Proc. R. Soc. B 265, 71–77 (1998).

Unsbo, P.

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: contrast sensitivity changes and stimulus extent,” Vis. Res. 110, 100–106 (2015).
[Crossref]

Valois, K. K. D.

K. K. D. Valois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vis. Res. 17, 1057–1065 (1977).
[Crossref]

Venkataraman, A. P.

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: contrast sensitivity changes and stimulus extent,” Vis. Res. 110, 100–106 (2015).
[Crossref]

Victor, J. D.

R. M. Shapley and J. D. Victor, “The effect of contrast on the transfer properties of cat retinal ganglion cells,” J. Physiol. 285, 275–298 (1978).
[Crossref]

Vinas, M.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6, 948–962 (2015).
[Crossref]

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
[Crossref]

M. Vinas, L. Sawides, P. De Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7, e46361 (2012).
[Crossref]

Wahl, S.

A. Ohlendorf, C. Kraft, A. Leube, and S. Wahl, “Swipecsf—fast and accurate measurement of the contrast sensitivity function,” Invest. Ophthalmol. Visual Sci. 59, 1276 (2018).

A. Leube, S. Kostial, G. A. Ochakovski, A. Ohlendorf, and S. Wahl, “Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions,” Vis. Res. 143, 52–57 (2018).
[Crossref]

T. Schilling, A. Ohlendorf, A. Leube, and S. Wahl, “Tuebingencstest—a useful method to assess the contrast sensitivity function,” Biomed. Opt. Express 8, 1477–1487 (2017).
[Crossref]

S. W. Habtegiorgis, K. Rifai, M. Lappe, and S. Wahl, “Adaptation to skew distortions of natural scenes and retinal specificity of its aftereffects,” Front. Psych. 8, 1158 (2017).
[Crossref]

Walker, S.

D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-effects models using lme4,” J. Stat. Softw. 67, 1 (2015).
[Crossref]

Wallman, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[Crossref]

Walsh, G.

G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiolog. Opt. 9, 398–404 (1989).
[Crossref]

Wann, J. P.

M. Mon-Williams, J. R. Tresilian, N. C. Strang, P. Kochhar, and J. P. Wann, “Improving vision: neural compensation for optical defocus,” Proc. R. Soc. B 265, 71–77 (1998).

Webster, M.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12):22, 1–22 (2010).
[Crossref]

Webster, M. A.

M. A. Webster and E. Miyahara, “Contrast adaptation and the spatial structure of natural images,” J. Opt. Soc. Am. A 14, 2355–2366 (1997).
[Crossref]

M. A. Webster, “Contrast sensitivity under natural states of adaptation,” in Human Vision and Electronic Imaging IV (International Society for Optics and Photonics, 1999), Vol. 3644, pp. 58–71.

Werner, A.

A. Werner, “The spatial tuning of chromatic adaptation,” Vis. Res. 43, 1611–1623 (2003).
[Crossref]

A. Werner, L. T. Sharpe, and E. Zrenner, “Asymmetries in the time-course of chromatic adaptation and the significance of contrast,” Vis. Res. 40, 1101–1113 (2000).
[Crossref]

Wildsoet, C. F.

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vis. Res. 33, 1593–1603 (1993).
[Crossref]

Williams, D. R.

P. Artal, E. J. Chen, L. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

Williams, D. W.

Wilson, H. R.

Winawer, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[Crossref]

Winter, S.

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: contrast sensitivity changes and stimulus extent,” Vis. Res. 110, 100–106 (2015).
[Crossref]

Wong, O.-Y.

W.-C. Ho, O.-Y. Wong, Y.-C. Chan, S.-W. Wong, C.-S. Kee, and H. H. Chan, “Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye,” Vis. Res. 52, 47–53 (2012).
[Crossref]

Wong, S.-W.

W.-C. Ho, O.-Y. Wong, Y.-C. Chan, S.-W. Wong, C.-S. Kee, and H. H. Chan, “Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye,” Vis. Res. 52, 47–53 (2012).
[Crossref]

Woods, R. L.

N. C. Strang, D. A. Atchison, and R. L. Woods, “Effects of defocus and pupil size on human contrast sensitivity,” Ophthalmic Physiolog. Opt. 19, 415–426 (1999).
[Crossref]

Ye, M.

Zhang, X.

Zrenner, E.

A. Werner, L. T. Sharpe, and E. Zrenner, “Asymmetries in the time-course of chromatic adaptation and the significance of contrast,” Vis. Res. 40, 1101–1113 (2000).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Front. Psych. (1)

S. W. Habtegiorgis, K. Rifai, M. Lappe, and S. Wahl, “Adaptation to skew distortions of natural scenes and retinal specificity of its aftereffects,” Front. Psych. 8, 1158 (2017).
[Crossref]

Invest. Ophthalmol. Visual Sci. (3)

N. Rajeev and A. Metha, “Enhanced contrast sensitivity confirms active compensation in blur adaptation,” Invest. Ophthalmol. Visual Sci. 51, 1242–1246 (2010).
[Crossref]

S. Diether, F. Gekeler, and F. Schaeffel, “Changes in contrast sensitivity induced by defocus and their possible relations to emmetropization in the chicken,” Invest. Ophthalmol. Visual Sci. 42, 3072–3079 (2001).

A. Ohlendorf, C. Kraft, A. Leube, and S. Wahl, “Swipecsf—fast and accurate measurement of the contrast sensitivity function,” Invest. Ophthalmol. Visual Sci. 59, 1276 (2018).

J. Comp. Neurol. (1)

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[Crossref]

J. Mem. Lang. (1)

R. H. Baayen, D. J. Davidson, and D. M. Bates, “Mixed-effects modeling with crossed random effects for subjects and items,” J. Mem. Lang. 59, 390–412 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Physiol. (5)

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
[Crossref]

C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).
[Crossref]

R. M. Shapley and J. D. Victor, “The effect of contrast on the transfer properties of cat retinal ganglion cells,” J. Physiol. 285, 275–298 (1978).
[Crossref]

C. Blakemore and F. W. Campbell, “Adaptation to spatial stimuli,” J. Physiol. 200, 11–13 (1969).

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
[Crossref]

J. Stat. Softw. (1)

D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-effects models using lme4,” J. Stat. Softw. 67, 1 (2015).
[Crossref]

J. Vis. (2)

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12):22, 1–22 (2010).
[Crossref]

P. Artal, E. J. Chen, L. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

Nat. Neurosci. (1)

A. J. Fischer, J. J. McGuire, F. Schaeffel, and W. K. Stell, “Light- and focus-dependent expression of the transcription factor ZENK in the chick retina,” Nat. Neurosci. 2, 706–712 (1999).
[Crossref]

Neuron (1)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[Crossref]

Ophthalmic Physiolog. Opt. (3)

G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiolog. Opt. 9, 398–404 (1989).
[Crossref]

A. Stockman and L. T. Sharpe, “Into the twilight zone: the complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiolog. Opt. 26, 225–239 (2006).
[Crossref]

N. C. Strang, D. A. Atchison, and R. L. Woods, “Effects of defocus and pupil size on human contrast sensitivity,” Ophthalmic Physiolog. Opt. 19, 415–426 (1999).
[Crossref]

Optometry Vis. Sci. (4)

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Unequal reduction in visual acuity with positive and negative defocusing lenses in myopes,” Optometry Vis. Sci. 81, 14–17 (2004).
[Crossref]

K. Pesudovs and N. A. Brennan, “Decreased uncorrected vision after a period of distance fixation with spectacle wear,” Optometry Vis. Sci. 70, 528–531 (1993).
[Crossref]

M. Rosenfield, S. E. Hong, and S. George, “Blur adaptation in myopes,” Optometry Vis. Sci. 81, 657–662 (2004).
[Crossref]

M. Vinas, P. de Gracia, C. Dorronsoro, L. Sawides, G. Marin, M. Hernández, and S. Marcos, “Astigmatism impact on visual performance: meridional and adaptational effects,” Optometry Vis. Sci. 90, 1430–1442 (2013).
[Crossref]

Perception (1)

M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, and C. Broussard, “What’s new in Psychtoolbox-3,” Perception 36, 1–16 (2007).
[Crossref]

PLoS One (1)

M. Vinas, L. Sawides, P. De Gracia, and S. Marcos, “Perceptual adaptation to the correction of natural astigmatism,” PLoS One 7, e46361 (2012).
[Crossref]

Proc. R. Soc. B (1)

M. Mon-Williams, J. R. Tresilian, N. C. Strang, P. Kochhar, and J. P. Wann, “Improving vision: neural compensation for optical defocus,” Proc. R. Soc. B 265, 71–77 (1998).

Science (1)

A. Pantle and R. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
[Crossref]

Spatial Vis. (2)

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442(1997).
[Crossref]

D. H. Brainard, “The psychophysics toolbox,” Spatial Vis. 10, 433–436 (1997).
[Crossref]

Vis. Neurosci. (1)

T. S. Heinrich and M. Bach, “Contrast adaptation in retinal and cortical evoked potentials: no adaptation to low spatial frequencies,” Vis. Neurosci. 19, 645–650 (2002).
[Crossref]

Vis. Res. (24)

S. Diether and F. Schaeffel, “Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia?” Vis. Res. 39, 2499–2510 (1999).
[Crossref]

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: contrast sensitivity changes and stimulus extent,” Vis. Res. 110, 100–106 (2015).
[Crossref]

A. Ohlendorf, J. Tabernero, and F. Schaeffel, “Neuronal adaptation to simulated and optically-induced astigmatic defocus,” Vis. Res. 51, 529–534 (2011).
[Crossref]

A. Werner, “The spatial tuning of chromatic adaptation,” Vis. Res. 43, 1611–1623 (2003).
[Crossref]

A. Ohlendorf and F. Schaeffel, “Contrast adaptation induced by defocus—a possible error signal for emmetropization?” Vis. Res. 49, 249–256 (2009).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[Crossref]

W.-C. Ho, O.-Y. Wong, Y.-C. Chan, S.-W. Wong, C.-S. Kee, and H. H. Chan, “Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye,” Vis. Res. 52, 47–53 (2012).
[Crossref]

F. Schaeffel and S. Diether, “The growing eye: an autofocus system that works on very poor images,” Vis. Res. 39, 1585–1589 (1999).
[Crossref]

J. M. Foley and G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vis. Res. 33, 959–980 (1993).
[Crossref]

M. A. Georgeson and M. G. Harris, “Spatial selectivity of contrast adaptation: models and data,” Vis. Res. 24, 729–741 (1984).
[Crossref]

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[Crossref]

S. T. Hammett, R. J. Snowden, and A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vis. Res. 34, 31–40 (1994).
[Crossref]

C. R. Sharpe and D. J. Tolhurst, “Orientation and spatial frequency channels in peripheral vision,” Vis. Res. 13, 2103–2112 (1973).
[Crossref]

D. J. Tolhurst and L. P. Barfield, “Interactions between spatial frequency channels,” Vis. Res. 18, 951–958 (1978).
[Crossref]

H. Radhakrishnan, S. Pardhan, R. I. Calver, and D. J. O’Leary, “Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes,” Vis. Res. 44, 1869–1878 (2004).
[Crossref]

A. Werner, L. T. Sharpe, and E. Zrenner, “Asymmetries in the time-course of chromatic adaptation and the significance of contrast,” Vis. Res. 40, 1101–1113 (2000).
[Crossref]

R. J. Snowden and S. T. Hammett, “Spatial frequency adaptation: threshold elevation and perceived contrast,” Vis. Res. 36, 1797–1809 (1996).
[Crossref]

S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
[Crossref]

A. Leube, S. Kostial, G. A. Ochakovski, A. Ohlendorf, and S. Wahl, “Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions,” Vis. Res. 143, 52–57 (2018).
[Crossref]

M. W. Greenlee and S. Magnussen, “Interactions among spatial frequency and orientation channels adapted concurrently,” Vis. Res. 28, 1303–1310 (1988).
[Crossref]

K. K. D. Valois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vis. Res. 17, 1057–1065 (1977).
[Crossref]

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vis. Res. 39, 2901–2927 (1999).
[Crossref]

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vis. Res. 42, 2409–2417 (2002).
[Crossref]

C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vis. Res. 33, 1593–1603 (1993).
[Crossref]

Other (4)

K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2010).

Y. Le Grand, Optique physiologique: La dioptrique de l’oeil et sa correction (Springer, 1964).

F. Schaeffel, “Contrast adaptation,” in Handbook of Visual Optics, P. Artal, ed. (CRC Press, Taylor & Francis, 2004).

M. A. Webster, “Contrast sensitivity under natural states of adaptation,” in Human Vision and Electronic Imaging IV (International Society for Optics and Photonics, 1999), Vol. 3644, pp. 58–71.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Normalized spectral intensity distribution for the polychromatic (Monitor) and the three monochromatic light conditions. Luminance for all four conditions was set to 1.0 cd / m 2 , and spherical refraction was shifted according to the chromatic aberration of the participant’s eye.
Fig. 2.
Fig. 2. Experimental sequence for single spatial frequency adaptation (Experiment 1).
Fig. 3.
Fig. 3. Experimental sequence for the complex frequencies adaptation (Experiment 2).
Fig. 4.
Fig. 4. Mean logarithmic contrast sensitivity before (bright bar) and after (dark bar) adaptation to a high contrast Gabor patch. Error bars represent the inter-subject standard deviation from N = 12 participants.
Fig. 5.
Fig. 5. LogCS pre- (bright bars) and post-adaptation to low (medium bars) and high (dark bars) contrast, for the complex frequencies adaptation experiment and all four chromatic light conditions. For the spatial frequencies (a) 2.0 cpd, (b) 4.0 cpd, and (c) 9.0 cpd. Error bars represent one standard deviation, and asterisks mark the differences’ levels of significance.

Tables (1)

Tables Icon

Table 1. AUC Pre- and Post-Low and High Contrast Adaptation for the Complex Frequencies Adaptation Experiment and All Four Spectral Light Conditions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y ) = sin ( ϕ ) y 3 , ϕ = e x ,
f ( x ) = 1 2 π d ϕ d x .

Metrics