Abstract

A model of closed-loop retinal motion tracking in an adaptive optics scanning light ophthalmoscope (AOSLO) was built, and the tracking performance was optimized by minimizing the root-mean-square of residual motion. We started with an evaluation of the fidelity of the retinal motion measurement, and then analyzed the transfer function of the system and power spectral density of retinal motion from human eyes, to achieve optimal control gain and sampling frequency. The performance was further enhanced by incorporating retinal motion prediction during the period in which the slow scanner was retracing. After optimization, residual image motion performance was improved by 33% with a nearly 50% reduction in computational cost in comparison to our previous setup, reaching a 3 dB bandwidth of 15–17 Hz, which is close to the frame rate (21fps) of this AOSLO system.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

Qiang Yang, Jie Zhang, Koji Nozato, Kenichi Saito, David R. Williams, Austin Roorda, and Ethan A. Rossi
Biomed. Opt. Express 5(9) 3174-3191 (2014)

An adaptive optics imaging system designed for clinical use

Jie Zhang, Qiang Yang, Kenichi Saito, Koji Nozato, David R. Williams, and Ethan A. Rossi
Biomed. Opt. Express 6(6) 2120-2137 (2015)

Real-time eye motion compensation for OCT imaging with tracking SLO

Kari V. Vienola, Boy Braaf, Christy K. Sheehy, Qiang Yang, Pavan Tiruveedhula, David W. Arathorn, Johannes F. de Boer, and Austin Roorda
Biomed. Opt. Express 3(11) 2950-2963 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription