Abstract

The two new kinds of truncated Gaussian beams, known as the half and quarter Gaussian beams, are defined as the product of the fundamental Gaussian beam with the Heaviside unit step function. Using the generalized Collins integral, the exact analytical propagation formulas are derived for the truncated Gaussian beams through paraxial optical systems. Combined with the Gaussian beam decomposition method, the truncated Gaussian beams are used to represent the sharp edges of a field after a hard aperture. The modified Gaussian beam decomposition method presented in this work enables the calculation of the diffraction of a given field from a hard aperture with an arbitrary shape. This solves one of the limitations of the conventional Gaussian beam decomposition method, which is its inability to accurately model the diffraction of fields with sharp edges, especially in the near field. The validity and accuracy of the proposed method are demonstrated using a few exemplary diffraction calculations.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation properties of a hard-edged diffracted beam generated by a Gaussian mirror resonator

Degang Deng, Chaoyang Wei, Youwei Tian, Jianda Shao, and Zhengxiu Fan
Appl. Opt. 45(25) 6435-6441 (2006)

Propagation and diffraction of truncated Gaussian beams

V. Nourrit, J.-L. de Bougrenet de la Tocnaye, and P. Chanclou
J. Opt. Soc. Am. A 18(3) 546-556 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription