Abstract

A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase every where along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five time-dependent Green functions. The Green functions are exact solutions of the combined linearized blooming and turbulence problems and are given in closed form for an arbitrary path. Any correction method is a boundary condition connecting the forward and backward fields. Time-dependent instabilities correspond to singularities in the appropriate combination of Green functions. Perfect field conjugation gives perfect correction and is stable at all spatial frequencies. Perfect phase-reversal correction is unstable at all spatial frequencies. The instability growth rate is proportional to absorbed irradiance, and the total gain in a convection clearing time is proportional to the dimensionless blooming number. High gain is predicted in moderate blooming. Convection shear reduces the gain for irradiances with an instability growth rate much smaller than the shear rate and suppresses the gain for irradiances with a Rayleigh-range optical-path-difference growth rate much smaller than the shear rate.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear analysis of thermal blooming compensation instabilities in laser propagation

Jeffrey D. Barchers
J. Opt. Soc. Am. A 26(7) 1638-1653 (2009)

Instability in saturated full-field compensation for thermal blooming

Jonathan F. Schonfeld
J. Opt. Soc. Am. B 9(10) 1794-1799 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (111)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription