Abstract

The amplitude impulse response (AIR) of coherent imaging systems with random binary apodizers is analyzed. Formulas for the mean value and the variance of the AIR are derived for two statistical one-dimensional models of apodizers: (1) nonuniform low-density shot noise and (2) a nonuniform unipolar synchronous random process. We show that for both models a high signal-to-noise ratio is achieved within the central peak and the low-order sidelobes of the AIR. Apodizers based on the second model permit higher values of the signal-to-noise ratio than those based on the first one.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of aberrations and apodization on the performance of coherent optical systems. II. Imaging

J. P. Mills and B. J. Thompson
J. Opt. Soc. Am. A 3(5) 704-716 (1986)

Effects of a random phase screen on the performance of an imaging system

Chih-Chin Yang and M. A. Plonus
Opt. Lett. 19(14) 1073-1075 (1994)

Asymmetric apodization in confocal scanning systems

Marek Kowalczyk, Carlos Javier Zapata-Rodríguez, and Manuel Martínez-Corral
Appl. Opt. 37(35) 8206-8214 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription