Abstract

We describe our efforts to observe squeezing, and related nonclassical effects, in three forward four-wave mixing experiments using sodium vapor as a nonlinear medium. In a single-beam experiment with homodyne detection, we found optically phase-sensitive noise, which was radio-frequency phase insensitive, in a cw dye-laser beam that had propagated through sodium vapor. The minima of the phase-sensitive noise were always at or above the coherent-state value. In our forward four-wave mixing experiment with probe–conjugate-beam direct detection and correlation, we found that the sodium-vapor interaction produced positive noise correlation between the probe and conjugate beams. The correlation, however, did not exceed the excess noises on these beams, so that a nonclassical behavior was not demonstrated. Finally, our forward four-wave mixing experiment with probe–conjugate-beam combination and homodyne detection did demonstrate the generation of squeezed-state light in our setup. Optically phase-sensitive noise with a minimum falling 4% below the coherent-state level was observed.

© 1987 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of squeezed noise produced by forward four-wave mixing in sodium vapor

Mari W. Maeda, Prem Kumar, and Jeffrey H. Shapiro
Opt. Lett. 12(3) 161-163 (1987)

Coherence properties of squeezed light and the degree of squeezing

Z. Y. Ou, C. K. Hong, and L. Mandel
J. Opt. Soc. Am. B 4(10) 1574-1587 (1987)

Squeezed-state generation in optical bistability

L. A. Orozco, M. G. Raizen, Min Xiao, R. J. Brecha, and H. J. Kimble
J. Opt. Soc. Am. B 4(10) 1490-1500 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription