G. Ouyang, Y. Xu, and A. Yariv, “Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics,” Opt. Express 9, 733–747, (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733
[Crossref]
[PubMed]
S. G. Johnson et al., “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779, (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748
[Crossref]
[PubMed]
Y. Xu, R. K. Lee, and A. Yariv, “Asymptotic analysis of Bragg fibers,” Opt. Lett. 25, 1756–1758, (2000).
[Crossref]
M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419, (2000).
[Crossref]
[PubMed]
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539, (1999).
[Crossref]
[PubMed]
Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041, (1999).
[Crossref]
F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, “Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method.” Opt. and Quantum Electron. 31, 827–841, (1999)
[Crossref]
M Onishi, T Kashiwada, Y Ishiguro, M Nishimura, and H Kanamori, “High-performance dispersion-compensating fibers,” Fiber Integ. Opt. 16, 277–285, (1997).
[Crossref]
S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639, (1996).
[Crossref]
B. Jopson and A. Gnauck, “Dispersion compensation for optical fiber systems,” IEEE Comm. Mag. 33, 96–102, (1995).
[Crossref]
J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys. 114, 185–200, (1994).
[Crossref]
A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer, “Optimal design of single-cladded dispersion-compensating optical fibers,” Opt. Lett. 19, 457–459, (1994).
[Crossref]
[PubMed]
M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432, (1983).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307, (1966).
M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432, (1983).
[Crossref]
F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, “Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method.” Opt. and Quantum Electron. 31, 827–841, (1999)
[Crossref]
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539, (1999).
[Crossref]
[PubMed]
F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, “Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method.” Opt. and Quantum Electron. 31, 827–841, (1999)
[Crossref]
J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys. 114, 185–200, (1994).
[Crossref]
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539, (1999).
[Crossref]
[PubMed]
C. Bradford, “Managing chromatic dispersion increases bandwidth,” Laser Focus World, February (2001).
M.R.C. Caputo and M.E. Gouvea, “Dispersion slope effects of the compensation dispersion fiber for broadband dispersion compensation in the presence of self-phase modulation,” Laser Focus World, February (2001).
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539, (1999).
[Crossref]
[PubMed]
M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419, (2000).
[Crossref]
[PubMed]
Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041, (1999).
[Crossref]
M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419, (2000).
[Crossref]
[PubMed]
Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041, (1999).
[Crossref]
S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639, (1996).
[Crossref]
B. Jopson and A. Gnauck, “Dispersion compensation for optical fiber systems,” IEEE Comm. Mag. 33, 96–102, (1995).
[Crossref]
M.R.C. Caputo and M.E. Gouvea, “Dispersion slope effects of the compensation dispersion fiber for broadband dispersion compensation in the presence of self-phase modulation,” Laser Focus World, February (2001).
M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432, (1983).
[Crossref]
M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419, (2000).
[Crossref]
[PubMed]
M Onishi, T Kashiwada, Y Ishiguro, M Nishimura, and H Kanamori, “High-performance dispersion-compensating fibers,” Fiber Integ. Opt. 16, 277–285, (1997).
[Crossref]
M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419, (2000).
[Crossref]
[PubMed]
Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041, (1999).
[Crossref]
B. Jopson and A. Gnauck, “Dispersion compensation for optical fiber systems,” IEEE Comm. Mag. 33, 96–102, (1995).
[Crossref]
M Onishi, T Kashiwada, Y Ishiguro, M Nishimura, and H Kanamori, “High-performance dispersion-compensating fibers,” Fiber Integ. Opt. 16, 277–285, (1997).
[Crossref]
M Onishi, T Kashiwada, Y Ishiguro, M Nishimura, and H Kanamori, “High-performance dispersion-compensating fibers,” Fiber Integ. Opt. 16, 277–285, (1997).
[Crossref]
M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432, (1983).
[Crossref]
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539, (1999).
[Crossref]
[PubMed]
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539, (1999).
[Crossref]
[PubMed]
F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, “Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method.” Opt. and Quantum Electron. 31, 827–841, (1999)
[Crossref]
M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432, (1983).
[Crossref]
M Onishi, T Kashiwada, Y Ishiguro, M Nishimura, and H Kanamori, “High-performance dispersion-compensating fibers,” Fiber Integ. Opt. 16, 277–285, (1997).
[Crossref]
M Onishi, T Kashiwada, Y Ishiguro, M Nishimura, and H Kanamori, “High-performance dispersion-compensating fibers,” Fiber Integ. Opt. 16, 277–285, (1997).
[Crossref]
Y. Xu, G. Ouyang, R. Lee, and A. Yariv, “Asymptotic matrix theory of Bragg fibers,” J. Lightwave Technol. 20, 428–440, (2002).
[Crossref]
G. Ouyang, Y. Xu, and A. Yariv, “Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics,” Opt. Express 9, 733–747, (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733
[Crossref]
[PubMed]
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539, (1999).
[Crossref]
[PubMed]
F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, “Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method.” Opt. and Quantum Electron. 31, 827–841, (1999)
[Crossref]
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539, (1999).
[Crossref]
[PubMed]
F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, “Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method.” Opt. and Quantum Electron. 31, 827–841, (1999)
[Crossref]
F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, “Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method.” Opt. and Quantum Electron. 31, 827–841, (1999)
[Crossref]
M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419, (2000).
[Crossref]
[PubMed]
Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041, (1999).
[Crossref]
Y. Xu, G. Ouyang, R. Lee, and A. Yariv, “Asymptotic matrix theory of Bragg fibers,” J. Lightwave Technol. 20, 428–440, (2002).
[Crossref]
G. Ouyang, Y. Xu, and A. Yariv, “Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics,” Opt. Express 9, 733–747, (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733
[Crossref]
[PubMed]
Y. Xu, R. K. Lee, and A. Yariv, “Asymptotic analysis of Bragg fibers,” Opt. Lett. 25, 1756–1758, (2000).
[Crossref]
Y. Xu, G. Ouyang, R. Lee, and A. Yariv, “Asymptotic matrix theory of Bragg fibers,” J. Lightwave Technol. 20, 428–440, (2002).
[Crossref]
G. Ouyang, Y. Xu, and A. Yariv, “Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics,” Opt. Express 9, 733–747, (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733
[Crossref]
[PubMed]
Y. Xu, R. K. Lee, and A. Yariv, “Asymptotic analysis of Bragg fibers,” Opt. Lett. 25, 1756–1758, (2000).
[Crossref]
P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201, (1978).
[Crossref]
P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438, (1977).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307, (1966).
P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201, (1978).
[Crossref]
P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438, (1977).
[Crossref]
F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, “Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method.” Opt. and Quantum Electron. 31, 827–841, (1999)
[Crossref]
M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432, (1983).
[Crossref]
M Onishi, T Kashiwada, Y Ishiguro, M Nishimura, and H Kanamori, “High-performance dispersion-compensating fibers,” Fiber Integ. Opt. 16, 277–285, (1997).
[Crossref]
B. Jopson and A. Gnauck, “Dispersion compensation for optical fiber systems,” IEEE Comm. Mag. 33, 96–102, (1995).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307, (1966).
S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639, (1996).
[Crossref]
J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys. 114, 185–200, (1994).
[Crossref]
Y. Xu, G. Ouyang, R. Lee, and A. Yariv, “Asymptotic matrix theory of Bragg fibers,” J. Lightwave Technol. 20, 428–440, (2002).
[Crossref]
Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041, (1999).
[Crossref]
P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201, (1978).
[Crossref]
P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438, (1977).
[Crossref]
F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, “Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method.” Opt. and Quantum Electron. 31, 827–841, (1999)
[Crossref]
G. Ouyang, Y. Xu, and A. Yariv, “Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics,” Opt. Express 9, 733–747, (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733
[Crossref]
[PubMed]
S. G. Johnson et al., “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779, (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748
[Crossref]
[PubMed]
Y. Xu, R. K. Lee, and A. Yariv, “Asymptotic analysis of Bragg fibers,” Opt. Lett. 25, 1756–1758, (2000).
[Crossref]
A. Vengsarkar and W. A. Reed, “Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation,” Opt. Lett. 18, 924–926, (1993).
[Crossref]
[PubMed]
A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer, “Optimal design of single-cladded dispersion-compensating optical fibers,” Opt. Lett. 19, 457–459, (1994).
[Crossref]
[PubMed]
R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539, (1999).
[Crossref]
[PubMed]
M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419, (2000).
[Crossref]
[PubMed]
C. Bradford, “Managing chromatic dispersion increases bandwidth,” Laser Focus World, February (2001).
M.R.C. Caputo and M.E. Gouvea, “Dispersion slope effects of the compensation dispersion fiber for broadband dispersion compensation in the presence of self-phase modulation,” Laser Focus World, February (2001).