Abstract

The effect of radiation bandwidth on the heterodyne detection process is discussed. We show that, although neglected in current formalisms, the spectral changes induced by the scattering process are decreasing the heterodyne detection efficiency. This effect depends on the bandwidth of the radiation used.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy

Adam Wax, Changhuei Yang, Ramachandra R. Dasari, and Michael S. Feld
Opt. Lett. 26(6) 322-324 (2001)

Spectroscopic optical coherence tomography

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto
Opt. Lett. 25(2) 111-113 (2000)

Measurement of dye diffusion in agar gel by use of low-coher ence interferometry

Trude Støren, Annette Simonsen, Ole J. Løkberg, Tore Lindmo, Lars O. Svaasand, and Arne Røyset
Opt. Lett. 28(14) 1215-1217 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. Y.T. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
    [Crossref] [PubMed]
  3. J.M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [Crossref]
  4. D. Levitz, L. Thrane, M.H. Frosz, P.A. Andersen, C.B. Andersen, J. Valanciunaite, J. Swartling, S. Andersson-Engels, and P.R. Hansen, “Determination of the optical scattering properties of highly scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-249.
    [Crossref] [PubMed]
  5. W. Drexler, U. Morgner, F.X. Kärtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [Crossref]
  6. G. R. Osche, “Optical detection theory for laser applications,” Wiley Series in Pure and Applied Optics, 2002.
  7. E. Wolf and D.F.V. James, “Correlation induced spectral changes,” Rep. Prog. Phys. 59, 771–812 (1996).
    [Crossref]
  8. A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23, 1340–1342 (1998).
    [Crossref]
  9. J.M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).
    [Crossref]
  10. A. Dogariu, “Volume scattering in random media,” in Handbook of Optics, vol III, M. Bass, J.M Enoch, E.W. van Stryland, and W. Wolfe, eds. (McGraw-Hill, New York, NY, 2001), pp. 3.1–3.18.

2004 (1)

1999 (1)

1998 (2)

1997 (1)

1996 (1)

E. Wolf and D.F.V. James, “Correlation induced spectral changes,” Rep. Prog. Phys. 59, 771–812 (1996).
[Crossref]

1995 (1)

1991 (1)

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Andersen, C.B.

Andersen, P.A.

Andersson-Engels, S.

Birngruber, R.

Boppart, S.A.

Chnag, W.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Dogariu, A.

A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23, 1340–1342 (1998).
[Crossref]

A. Dogariu, “Volume scattering in random media,” in Handbook of Optics, vol III, M. Bass, J.M Enoch, E.W. van Stryland, and W. Wolfe, eds. (McGraw-Hill, New York, NY, 2001), pp. 3.1–3.18.

Drexler, W.

Engelhardt, R.

Flotte, T.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Frosz, M.H.

Fujimoto, J.G.

W. Drexler, U. Morgner, F.X. Kärtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hansen, P.R.

Hee, M.R.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Ippen, E.P.

James, D.F.V.

E. Wolf and D.F.V. James, “Correlation induced spectral changes,” Rep. Prog. Phys. 59, 771–812 (1996).
[Crossref]

Kärtner, F.X.

Knüttel, A.

Kumar, G.

Levitz, D.

Li, X.D.

Lin, C.P.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Morgner, U.

Osche, G. R.

G. R. Osche, “Optical detection theory for laser applications,” Wiley Series in Pure and Applied Optics, 2002.

Pan, Y.T.

Pitris, C.

Puliafito, C.A.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Rosperich, J.

Schmitt, J.M.

Schuman, J.S.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Stinson, W.G.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Swartling, J.

Thrane, L.

Valanciunaite, J.

Wolf, E.

A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23, 1340–1342 (1998).
[Crossref]

E. Wolf and D.F.V. James, “Correlation induced spectral changes,” Rep. Prog. Phys. 59, 771–812 (1996).
[Crossref]

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (2)

Rep. Prog. Phys. (1)

E. Wolf and D.F.V. James, “Correlation induced spectral changes,” Rep. Prog. Phys. 59, 771–812 (1996).
[Crossref]

Science (1)

D. Huang, E. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chnag, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

G. R. Osche, “Optical detection theory for laser applications,” Wiley Series in Pure and Applied Optics, 2002.

A. Dogariu, “Volume scattering in random media,” in Handbook of Optics, vol III, M. Bass, J.M Enoch, E.W. van Stryland, and W. Wolfe, eds. (McGraw-Hill, New York, NY, 2001), pp. 3.1–3.18.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Spectrum of the scattered light for monodisperse systems of scatterers with radius of 200nm and two different volume fractions of 5% and 45% as indicated. For comparison, the spectrum of the incident light S 0 is also included (Δλ=100nm).
Fig. 2.
Fig. 2. Heterodyne detection efficiency evaluated from Eq.(1) as a function of the volume fraction of the scattering centers (200nm radius; 1.05 refractive index contrast). The three curves represent the detection efficiency for different spectral widths Δλ of the incident beam as indicated. The inset presents the heterodyne detection efficiency versus the spectral width of the incident radiation, for two different concentrations of scatterers 45% (triangles) and 5% (circles).
Fig. 3.
Fig. 3. Im age contrasts Chet and Cbks versus the bandwidth of the incident radiation. Regions 1 and 2, as indicated in the inset, have scattering centers of the same size 2.5µm but different volume fractions: 5% and 45%, respectively. The relative refractive index between the scattering centers and the background is ns/nb =1.05.
Fig. 4.
Fig. 4. Image contrasts Chet and Cbks versus the bandwidth of the incident radiat ion. Regions 1 and 2 have same volume fractions of the scattering centers (5%) but different sizes: 0.2µm and 2.5µm, respectively. The relative refractive index between the scattering centers and the background is ns/nb =1.05.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

η = S 0 ( ω ) S ( ω ) d ω 2 S 0 ( ω ) d ω S ( ω ) d ω ,
S ( r u , ω ) = 1 r 2 F ˜ ( k ( u u 0 ) , ω ) 2 S 0 ( ω ) ,
Y ( u ) = i , j = 1 N exp ( i u · ( r i r j ) )
Y ( u ) = 1 + < exp ( i u · ( r i r j ) ) > = 1 + ρ G ( r ) exp ( i u · r ) d r
F ˜ ( k ( u u 0 ) , ω ) 2 = f 1 ( u , u 0 ; ω ) 2 = σ t 4 π p PY ( u , u 0 ; ω )
p PY ( u , u 0 ; ω ) = p ( u , u 0 ; ω ) Y ( u ) .
C bks = R b 1 R b 2 R b 1 + R b 2 ,
R b = σ b 2 σ t [ 1 exp ( 2 ρ σ t l c ) ]
C het = R het 1 R het 2 R het 1 + R het 2

Metrics