H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[Crossref]
B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[Crossref]
I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).
J.A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fibers and Integrated Opt. 19, 211–227 (2000).
[Crossref]
M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[Crossref]
D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[Crossref]
M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[Crossref]
M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
[Crossref]
[PubMed]
E.J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission of Lasers,” Bell Sys. Tech. J. 43, 1783 (1964).
M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[Crossref]
M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
[Crossref]
[PubMed]
M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
[Crossref]
[PubMed]
M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
[Crossref]
[PubMed]
M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
[Crossref]
[PubMed]
I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).
M. Ben-David and PhD Thesis, “Development of Hollow Waveguides or IR Radiation,” Tel-Aviv University, (2003).
I. Gannot and Moshe Ben-David, “Optical Fibers and Waveguides for Medical Applications,” Biomedical Photonics handbook,” CRC press, Chapter 7, pages 7.1–7.22, (2003).
B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[Crossref]
D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[Crossref]
I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).
M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[Crossref]
N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow plastic fibers for the transmission of infra-red radiation,” Appl. Opt. 29, 1805–1809 (1990).
[Crossref]
[PubMed]
D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, and N. Croitoru, “Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides” Appl. Opt. 28, 708 (1989).
[Crossref]
[PubMed]
I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).
M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[Crossref]
M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[Crossref]
N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow plastic fibers for the transmission of infra-red radiation,” Appl. Opt. 29, 1805–1809 (1990).
[Crossref]
[PubMed]
D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, and N. Croitoru, “Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides” Appl. Opt. 28, 708 (1989).
[Crossref]
[PubMed]
D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[Crossref]
H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[Crossref]
B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[Crossref]
I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).
N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow plastic fibers for the transmission of infra-red radiation,” Appl. Opt. 29, 1805–1809 (1990).
[Crossref]
[PubMed]
I. Gannot and Moshe Ben-David, “Optical Fibers and Waveguides for Medical Applications,” Biomedical Photonics handbook,” CRC press, Chapter 7, pages 7.1–7.22, (2003).
I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).
D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[Crossref]
H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[Crossref]
P. O. Pedersen and J. A. Harrington, “Characterization of hollow glass waveguides (HGWs) with metal-sulfide dielectric coatings,” paper 5317-08, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
J.A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fibers and Integrated Opt. 19, 211–227 (2000).
[Crossref]
G. N. Merberg and J.A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
[Crossref]
[PubMed]
J.A. Harrington, Infrared Fiber Optics and Their Applications, SPIE press, (2004).
[Crossref]
B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[Crossref]
I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).
I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).
B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[Crossref]
R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[Crossref]
M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
[Crossref]
[PubMed]
E.J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission of Lasers,” Bell Sys. Tech. J. 43, 1783 (1964).
R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[Crossref]
M. Miyagi and S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
[Crossref]
[PubMed]
M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[Crossref]
R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[Crossref]
M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
[Crossref]
[PubMed]
I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).
P. O. Pedersen and J. A. Harrington, “Characterization of hollow glass waveguides (HGWs) with metal-sulfide dielectric coatings,” paper 5317-08, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[Crossref]
E.J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission of Lasers,” Bell Sys. Tech. J. 43, 1783 (1964).
H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[Crossref]
M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[Crossref]
B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[Crossref]
M. Ben-David and PhD Thesis, “Development of Hollow Waveguides or IR Radiation,” Tel-Aviv University, (2003).
M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
[Crossref]
[PubMed]
I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).
H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[Crossref]
N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow plastic fibers for the transmission of infra-red radiation,” Appl. Opt. 29, 1805–1809 (1990).
[Crossref]
[PubMed]
M. Miyagi and S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
[Crossref]
[PubMed]
G. N. Merberg and J.A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
[Crossref]
[PubMed]
M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
[Crossref]
[PubMed]
D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, and N. Croitoru, “Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides” Appl. Opt. 28, 708 (1989).
[Crossref]
[PubMed]
E.J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission of Lasers,” Bell Sys. Tech. J. 43, 1783 (1964).
J.A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fibers and Integrated Opt. 19, 211–227 (2000).
[Crossref]
M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[Crossref]
M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[Crossref]
I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).
H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[Crossref]
B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[Crossref]
D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[Crossref]
M. Ben-David and PhD Thesis, “Development of Hollow Waveguides or IR Radiation,” Tel-Aviv University, (2003).
I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).
P. O. Pedersen and J. A. Harrington, “Characterization of hollow glass waveguides (HGWs) with metal-sulfide dielectric coatings,” paper 5317-08, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
I. Gannot and Moshe Ben-David, “Optical Fibers and Waveguides for Medical Applications,” Biomedical Photonics handbook,” CRC press, Chapter 7, pages 7.1–7.22, (2003).
J.A. Harrington, Infrared Fiber Optics and Their Applications, SPIE press, (2004).
[Crossref]