Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]
[PubMed]
B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials4, 207–210 (2005); B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science300, 1537 (2003).
[Crossref]
Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 4437–4442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437
[Crossref]
[PubMed]
V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004); V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Letters29, 2387–2389 (2004).
[Crossref]
[PubMed]
V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004); V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Letters29, 2387–2389 (2004).
[Crossref]
[PubMed]
T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Optics Letters 29, 1224–1226 (2004).
[Crossref]
[PubMed]
Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]
[PubMed]
B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials4, 207–210 (2005); B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science300, 1537 (2003).
[Crossref]
B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials4, 207–210 (2005); B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science300, 1537 (2003).
[Crossref]
H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]
H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447(2004).
[Crossref]
[PubMed]
P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801
[Crossref]
[PubMed]
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]
V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004); V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Letters29, 2387–2389 (2004).
[Crossref]
[PubMed]
Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, Hoboken, New Jersey, 2003); Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev.137 (6A), A1787 (1965).
K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quan. Elect. 25, 2665 (1989).
[Crossref]
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]
H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66 (10), 4801 (1989).
[Crossref]
H.-B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett.73, 2440 (1994); H.-B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Comm.133, 287 (1997).
[Crossref]
[PubMed]
H.-B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett.73, 2440 (1994); H.-B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Comm.133, 287 (1997).
[Crossref]
[PubMed]
X. Chen, Nicolae C. Panoiu, and R. M. Osgood, Microelectronics Sciences Laboratories, Columbia University, New York, NY 10027, (personal communication, 2005).
R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716–1723 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1716
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]
[PubMed]
E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fiberes,” IEEE J. of Quan. Elect. 26 (10), 1815 (1990).
[Crossref]
F. X. Kärtner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B.11, 1267 (1994); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B.6, 1159 (1989).
[Crossref]
H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A64, 043804 (2001); H. G. Winful, V. E. Perlin, and M. Franke, “Stimulated Raman and Brillouin Scattering in nonlinear periodic structures,” in Proc. of Nonlinear Optics: Materials, Fundamentals, and Applications, Kaua’i-Lihue, Hawaii (2000).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]
[PubMed]
E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fiberes,” IEEE J. of Quan. Elect. 26 (10), 1815 (1990).
[Crossref]
F. X. Kärtner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B.11, 1267 (1994); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B.6, 1159 (1989).
[Crossref]
A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2000); RSoft FullWave commercial software used.
R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716–1723 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1716
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]
F. X. Kärtner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B.11, 1267 (1994); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B.6, 1159 (1989).
[Crossref]
F. X. Kärtner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B.11, 1267 (1994); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B.6, 1159 (1989).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]
[PubMed]
C. Sauvan, P. Lalanne, and J.P. Hugonin, “Slow-wave effect and mode-profile matching in Photonic Crystal microcavities,” Phys. Rev. B. (to be published), http://arxiv.org/abs/cond-mat/0502664.
A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum Semiclass. Opt. 5, 272–278 (2003).
[Crossref]
P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled microdisk resonators realized using three-dimensional sculpting in silicon,” Appl. Phys. Lett. 85, 1018–1020 (2003).
[Crossref]
F. X. Kärtner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B.11, 1267 (1994); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B.6, 1159 (1989).
[Crossref]
O. Boyraz and B. Jalali, “Demonstration of directly modulated silicon Raman laser,” Opt. Express 13, 796–800 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-796
[Crossref]
[PubMed]
O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269
[Crossref]
[PubMed]
R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
[Crossref]
[PubMed]
P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled microdisk resonators realized using three-dimensional sculpting in silicon,” Appl. Phys. Lett. 85, 1018–1020 (2003).
[Crossref]
S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
[Crossref]
[PubMed]
S. G. Johnson, MIT, Cambridge, MA, personal communication, 2005; V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys.107, 6756 (1997); Erratum, ibid.109, 4128 (1998).
R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716–1723 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1716
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447(2004).
[Crossref]
[PubMed]
F. X. Kärtner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B.11, 1267 (1994); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B.6, 1159 (1989).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]
[PubMed]
R. G. Zaporozhchenko, S. Ya. Kilin, and A. G. Smirnov, “Stimulated Raman scattering of light in a photonic crystal,” Quan. Elect. 30, 997 (2000).
[Crossref]
H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447(2004).
[Crossref]
[PubMed]
H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447(2004).
[Crossref]
[PubMed]
K. Wada, K., H. C. Luan, D. R. C. Lim, and L. C. Kimerling., “On-chip interconnection beyond semiconductor roadmap: silicon microphotonics,” Proc. SPIE 4870, 437–443 (2002).
[Crossref]
T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Optics Letters 29, 1224–1226 (2004).
[Crossref]
[PubMed]
B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Optics Lett. 28 (17), 1507 (2003).
[Crossref]
M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]
[PubMed]
L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-verlag, New York, 2004); G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004).
P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled microdisk resonators realized using three-dimensional sculpting in silicon,” Appl. Phys. Lett. 85, 1018–1020 (2003).
[Crossref]
H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447(2004).
[Crossref]
[PubMed]
H. M. Lai, P. T. Leung, and K. Young, “Electromagnetic decay into a narrow resonance in an optical cavity,” Phys. Rev. A. 37, 1597 (1988).
[Crossref]
[PubMed]
C. Sauvan, P. Lalanne, and J.P. Hugonin, “Slow-wave effect and mode-profile matching in Photonic Crystal microcavities,” Phys. Rev. B. (to be published), http://arxiv.org/abs/cond-mat/0502664.
H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447(2004).
[Crossref]
[PubMed]
A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum Semiclass. Opt. 5, 272–278 (2003).
[Crossref]
H. M. Lai, P. T. Leung, and K. Young, “Electromagnetic decay into a narrow resonance in an optical cavity,” Phys. Rev. A. 37, 1597 (1988).
[Crossref]
[PubMed]
Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett.24, 345 (1999); Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A60, 630 (1999).
[Crossref]
Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett.24, 345 (1999); Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A60, 630 (1999).
[Crossref]
T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]
H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]
K. Wada, K., H. C. Luan, D. R. C. Lim, and L. C. Kimerling., “On-chip interconnection beyond semiconductor roadmap: silicon microphotonics,” Proc. SPIE 4870, 437–443 (2002).
[Crossref]
H.-B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett.73, 2440 (1994); H.-B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Comm.133, 287 (1997).
[Crossref]
[PubMed]
H.-B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett.73, 2440 (1994); H.-B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Comm.133, 287 (1997).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 4437–4442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437
[Crossref]
[PubMed]
V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004); V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Letters29, 2387–2389 (2004).
[Crossref]
[PubMed]
V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004); V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Letters29, 2387–2389 (2004).
[Crossref]
[PubMed]
R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716–1723 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1716
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-verlag, New York, 2004); G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004).
K. Wada, K., H. C. Luan, D. R. C. Lim, and L. C. Kimerling., “On-chip interconnection beyond semiconductor roadmap: silicon microphotonics,” Proc. SPIE 4870, 437–443 (2002).
[Crossref]
A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum Semiclass. Opt. 5, 272–278 (2003).
[Crossref]
E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fiberes,” IEEE J. of Quan. Elect. 26 (10), 1815 (1990).
[Crossref]
S. G. Johnson, MIT, Cambridge, MA, personal communication, 2005; V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys.107, 6756 (1997); Erratum, ibid.109, 4128 (1998).
A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum Semiclass. Opt. 5, 272–278 (2003).
[Crossref]
B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Optics Lett. 28 (17), 1507 (2003).
[Crossref]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]
[PubMed]
B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials4, 207–210 (2005); B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science300, 1537 (2003).
[Crossref]
B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials4, 207–210 (2005); B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science300, 1537 (2003).
[Crossref]
M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2678
[Crossref]
[PubMed]
H. Ryu, M. Notomi, G. Kim, and Y. Lee, “High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity,” Opt. Express 12, 1708–1719 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708
[Crossref]
[PubMed]
R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713
[Crossref]
[PubMed]
X. Chen, Nicolae C. Panoiu, and R. M. Osgood, Microelectronics Sciences Laboratories, Columbia University, New York, NY 10027, (personal communication, 2005).
P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801
[Crossref]
[PubMed]
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]
K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670–684 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670
[PubMed]
J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled resonator optical waveguides: toward the slowing and storage of light,” Optics & Photonics News 16 (2), 36–40, (2005).
[Crossref]
V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004); V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Letters29, 2387–2389 (2004).
[Crossref]
[PubMed]
R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716–1723 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1716
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
X. Chen, Nicolae C. Panoiu, and R. M. Osgood, Microelectronics Sciences Laboratories, Columbia University, New York, NY 10027, (personal communication, 2005).
H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447(2004).
[Crossref]
[PubMed]
L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-verlag, New York, 2004); G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004).
V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A64, 043804 (2001); H. G. Winful, V. E. Perlin, and M. Franke, “Stimulated Raman and Brillouin Scattering in nonlinear periodic structures,” in Proc. of Nonlinear Optics: Materials, Fundamentals, and Applications, Kaua’i-Lihue, Hawaii (2000).
[Crossref]
V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A64, 043804 (2001); H. G. Winful, V. E. Perlin, and M. Franke, “Stimulated Raman and Brillouin Scattering in nonlinear periodic structures,” in Proc. of Nonlinear Optics: Materials, Fundamentals, and Applications, Kaua’i-Lihue, Hawaii (2000).
[Crossref]
E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fiberes,” IEEE J. of Quan. Elect. 26 (10), 1815 (1990).
[Crossref]
J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled resonator optical waveguides: toward the slowing and storage of light,” Optics & Photonics News 16 (2), 36–40, (2005).
[Crossref]
L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-verlag, New York, 2004); G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004).
H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]
R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716–1723 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1716
[Crossref]
[PubMed]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express13, 519–525 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-519 ; H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433, 292–294 (2005); H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433, 725–728 (2005).
[Crossref]
[PubMed]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]
[PubMed]
C. Sauvan, P. Lalanne, and J.P. Hugonin, “Slow-wave effect and mode-profile matching in Photonic Crystal microcavities,” Phys. Rev. B. (to be published), http://arxiv.org/abs/cond-mat/0502664.
A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum Semiclass. Opt. 5, 272–278 (2003).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]
[PubMed]
J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled resonator optical waveguides: toward the slowing and storage of light,” Optics & Photonics News 16 (2), 36–40, (2005).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]
[PubMed]
Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, Hoboken, New Jersey, 2003); Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev.137 (6A), A1787 (1965).
Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, Hoboken, New Jersey, 2003); Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev.137 (6A), A1787 (1965).
R. G. Zaporozhchenko, S. Ya. Kilin, and A. G. Smirnov, “Stimulated Raman scattering of light in a photonic crystal,” Quan. Elect. 30, 997 (2000).
[Crossref]
M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature materials 3, 211–219 (2004).
[Crossref]
[PubMed]
Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]
[PubMed]
B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials4, 207–210 (2005); B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science300, 1537 (2003).
[Crossref]
B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials4, 207–210 (2005); B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science300, 1537 (2003).
[Crossref]
M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]
[PubMed]
T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Optics Letters 29, 1224–1226 (2004).
[Crossref]
[PubMed]
P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801
[Crossref]
[PubMed]
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]
K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670–684 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670
[PubMed]
F. X. Kärtner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B.11, 1267 (1994); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B.6, 1159 (1989).
[Crossref]
A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2000); RSoft FullWave commercial software used.
S. G. Johnson, MIT, Cambridge, MA, personal communication, 2005; V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys.107, 6756 (1997); Erratum, ibid.109, 4128 (1998).
F. X. Kärtner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B.11, 1267 (1994); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B.6, 1159 (1989).
[Crossref]
T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]
H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]
T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Optics Letters 29, 1224–1226 (2004).
[Crossref]
[PubMed]
K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]
[PubMed]
B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Optics Lett. 28 (17), 1507 (2003).
[Crossref]
M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]
[PubMed]
K. Wada, K., H. C. Luan, D. R. C. Lim, and L. C. Kimerling., “On-chip interconnection beyond semiconductor roadmap: silicon microphotonics,” Proc. SPIE 4870, 437–443 (2002).
[Crossref]
V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A64, 043804 (2001); H. G. Winful, V. E. Perlin, and M. Franke, “Stimulated Raman and Brillouin Scattering in nonlinear periodic structures,” in Proc. of Nonlinear Optics: Materials, Fundamentals, and Applications, Kaua’i-Lihue, Hawaii (2000).
[Crossref]
V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A64, 043804 (2001); H. G. Winful, V. E. Perlin, and M. Franke, “Stimulated Raman and Brillouin Scattering in nonlinear periodic structures,” in Proc. of Nonlinear Optics: Materials, Fundamentals, and Applications, Kaua’i-Lihue, Hawaii (2000).
[Crossref]
H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]
X. Yang, J. Yan, and C. W. Wong, “Design and fabrication of L5 photonic band gap nanocavities for stimulated Raman amplification in monolithic silicon,” CLEO/QELS, CMU2, Baltimore, Maryland (2005).
K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quan. Elect. 25, 2665 (1989).
[Crossref]
Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett.24, 345 (1999); Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A60, 630 (1999).
[Crossref]
Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett.24, 345 (1999); Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A60, 630 (1999).
[Crossref]
X. Yang, J. Yan, and C. W. Wong, “Design and fabrication of L5 photonic band gap nanocavities for stimulated Raman amplification in monolithic silicon,” CLEO/QELS, CMU2, Baltimore, Maryland (2005).
H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447(2004).
[Crossref]
[PubMed]
X. Yang, J. Yan, and C. W. Wong, “Design and fabrication of L5 photonic band gap nanocavities for stimulated Raman amplification in monolithic silicon,” CLEO/QELS, CMU2, Baltimore, Maryland (2005).
Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett.24, 345 (1999); Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A60, 630 (1999).
[Crossref]
J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled resonator optical waveguides: toward the slowing and storage of light,” Optics & Photonics News 16 (2), 36–40, (2005).
[Crossref]
H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66 (10), 4801 (1989).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]
[PubMed]
H. M. Lai, P. T. Leung, and K. Young, “Electromagnetic decay into a narrow resonance in an optical cavity,” Phys. Rev. A. 37, 1597 (1988).
[Crossref]
[PubMed]
R. G. Zaporozhchenko, S. Ya. Kilin, and A. G. Smirnov, “Stimulated Raman scattering of light in a photonic crystal,” Quan. Elect. 30, 997 (2000).
[Crossref]