H. Rokhsari, .S. M. Spillane, and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Letts. 30, 427–429 (2005).
[Crossref]
C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature. 432, 1002–1005, (2004).
[Crossref]
[PubMed]
S. W. Schediwy, C. Zhao, and L. Ju, et al, “An experiment to investigate optical spring parametric instability,” Classica Quant. Grav. 21, S1253–S12587 (2004).
[Crossref]
X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanodevice motion at microwave frequencies,” Nature. 421, 496 (2003).
[Crossref]
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala K. J, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–929 (2003).
[Crossref]
[PubMed]
S. Mancini, V. Giovanetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]
[PubMed]
W. Kells and E. D’Ambrosio, “Considerations on parametric instability in Fabry-Perot interferometer,” Phys. Lett. A. 299, 326–330 (2002).
[Crossref]
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Analysis of parametric oscillatory instability in power recycled LIGO interferometer,” Phys Lett. A. 305, 111–124 (2002).
[Crossref]
M. Zalalutdinov, et a, “Autoparametric optical drive for micromechanical oscillators,” Appl. Phys. Lett. 79, 695–697. (2001).
[Crossref]
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A. 287, 331–338 (2001).
[Crossref]
B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature (London), 413, 400 (2001).
[Crossref]
V. Giovanetti, S. Mancini, and P. Tombesi, “Radiation pressure induced Einstein-Podolsky_Rosen paradox,” Europhys. Lett. 54, 559–565, (2001).
[Crossref]
M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a Fiber taper to a silica microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]
[PubMed]
I. Tittonen, et al, “Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits,” Phys. Rev. A. 59, 1038 (1999);
[Crossref]
V. S. Ilchenko and M. L. Gorodetsky, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
A. Dorsel, J. D. Mccullen, and P. Meystre, et al. “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51, 1550–1553 (1983).
[Crossref]
V. B. Braginsky, A. B. Manukin, and M. Y. Tikhonov, “Investigation of dissipative Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP-USSR. 31, 829–830 (1970).
V. B. Braginsky and A. B. Manukin, “Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP-USSR. 25, 653–655 (1967).
V. B. Braginsky, I. I. Minakova, and P. M. Stepunin, “Absolute measurement of energy and power in optical spectrum according to electromagnetic pressure,” Instrum. Exper. Tech-U. 3, 658–663 (1965).
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala K. J, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–929 (2003).
[Crossref]
[PubMed]
S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglemet and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A., 68, 062317, (2003); W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys.Rev. Lett.91, 130401, SEP (2003).
[Crossref]
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Analysis of parametric oscillatory instability in power recycled LIGO interferometer,” Phys Lett. A. 305, 111–124 (2002).
[Crossref]
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A. 287, 331–338 (2001).
[Crossref]
V. B. Braginsky, A. B. Manukin, and M. Y. Tikhonov, “Investigation of dissipative Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP-USSR. 31, 829–830 (1970).
V. B. Braginsky and A. B. Manukin, “Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP-USSR. 25, 653–655 (1967).
V. B. Braginsky, I. I. Minakova, and P. M. Stepunin, “Absolute measurement of energy and power in optical spectrum according to electromagnetic pressure,” Instrum. Exper. Tech-U. 3, 658–663 (1965).
M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a Fiber taper to a silica microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, and K. J. Vahala, accepted by Phys. Rev. Lett.
W. Kells and E. D’Ambrosio, “Considerations on parametric instability in Fabry-Perot interferometer,” Phys. Lett. A. 299, 326–330 (2002).
[Crossref]
A. Dorsel, J. D. Mccullen, and P. Meystre, et al. “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51, 1550–1553 (1983).
[Crossref]
S. Mancini, V. Giovanetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]
[PubMed]
V. Giovanetti, S. Mancini, and P. Tombesi, “Radiation pressure induced Einstein-Podolsky_Rosen paradox,” Europhys. Lett. 54, 559–565, (2001).
[Crossref]
V. S. Ilchenko and M. L. Gorodetsky, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanodevice motion at microwave frequencies,” Nature. 421, 496 (2003).
[Crossref]
V. S. Ilchenko and M. L. Gorodetsky, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
S. W. Schediwy, C. Zhao, and L. Ju, et al, “An experiment to investigate optical spring parametric instability,” Classica Quant. Grav. 21, S1253–S12587 (2004).
[Crossref]
B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature (London), 413, 400 (2001).
[Crossref]
C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature. 432, 1002–1005, (2004).
[Crossref]
[PubMed]
W. Kells and E. D’Ambrosio, “Considerations on parametric instability in Fabry-Perot interferometer,” Phys. Lett. A. 299, 326–330 (2002).
[Crossref]
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala K. J, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–929 (2003).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, and K. J. Vahala, accepted by Phys. Rev. Lett.
B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature (London), 413, 400 (2001).
[Crossref]
S. Mancini, V. Giovanetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]
[PubMed]
V. Giovanetti, S. Mancini, and P. Tombesi, “Radiation pressure induced Einstein-Podolsky_Rosen paradox,” Europhys. Lett. 54, 559–565, (2001).
[Crossref]
S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglemet and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A., 68, 062317, (2003); W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys.Rev. Lett.91, 130401, SEP (2003).
[Crossref]
V. B. Braginsky, A. B. Manukin, and M. Y. Tikhonov, “Investigation of dissipative Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP-USSR. 31, 829–830 (1970).
V. B. Braginsky and A. B. Manukin, “Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP-USSR. 25, 653–655 (1967).
S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglemet and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A., 68, 062317, (2003); W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys.Rev. Lett.91, 130401, SEP (2003).
[Crossref]
A. Dorsel, J. D. Mccullen, and P. Meystre, et al. “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51, 1550–1553 (1983).
[Crossref]
X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanodevice motion at microwave frequencies,” Nature. 421, 496 (2003).
[Crossref]
C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature. 432, 1002–1005, (2004).
[Crossref]
[PubMed]
A. Dorsel, J. D. Mccullen, and P. Meystre, et al. “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51, 1550–1553 (1983).
[Crossref]
V. B. Braginsky, I. I. Minakova, and P. M. Stepunin, “Absolute measurement of energy and power in optical spectrum according to electromagnetic pressure,” Instrum. Exper. Tech-U. 3, 658–663 (1965).
M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a Fiber taper to a silica microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]
[PubMed]
S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglemet and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A., 68, 062317, (2003); W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys.Rev. Lett.91, 130401, SEP (2003).
[Crossref]
S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglemet and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A., 68, 062317, (2003); W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys.Rev. Lett.91, 130401, SEP (2003).
[Crossref]
B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature (London), 413, 400 (2001).
[Crossref]
H. Rokhsari, .S. M. Spillane, and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Letts. 30, 427–429 (2005).
[Crossref]
T. J. Kippenberg, H. Rokhsari, T. Carmon, and K. J. Vahala, accepted by Phys. Rev. Lett.
For f (d)<0, i.e. a red shift of the pump frequency with respect to the cavity mode, the phase of the radiation pressure variations actually damps or “cools” the vibrations. Note that no external feedback system is necessary here to damp the vibrations or “cool” the resonator. The feedback system is inherent to the coupling mechanism. Due to the high quality factor of our cavities (Q~10 million) the “red shifted” tail of the optical mode is not thermally stable (see H. Rokhsariet. al. “Loss characterization in micro-cavities using the thermal bistability effect.Applied Physics Letters85, 3029–3031 (2004)). Replacing the cavity material (silica) with a negative thermo-optic coefficient material would stabilize the red shifted tail and cavity-cooling induced by radiation pressure effects could be observable.
[Crossref]
X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanodevice motion at microwave frequencies,” Nature. 421, 496 (2003).
[Crossref]
S. W. Schediwy, C. Zhao, and L. Ju, et al, “An experiment to investigate optical spring parametric instability,” Classica Quant. Grav. 21, S1253–S12587 (2004).
[Crossref]
S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglemet and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A., 68, 062317, (2003); W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys.Rev. Lett.91, 130401, SEP (2003).
[Crossref]
H. Rokhsari, .S. M. Spillane, and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Letts. 30, 427–429 (2005).
[Crossref]
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala K. J, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–929 (2003).
[Crossref]
[PubMed]
V. B. Braginsky, I. I. Minakova, and P. M. Stepunin, “Absolute measurement of energy and power in optical spectrum according to electromagnetic pressure,” Instrum. Exper. Tech-U. 3, 658–663 (1965).
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Analysis of parametric oscillatory instability in power recycled LIGO interferometer,” Phys Lett. A. 305, 111–124 (2002).
[Crossref]
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A. 287, 331–338 (2001).
[Crossref]
V. B. Braginsky, A. B. Manukin, and M. Y. Tikhonov, “Investigation of dissipative Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP-USSR. 31, 829–830 (1970).
I. Tittonen, et al, “Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits,” Phys. Rev. A. 59, 1038 (1999);
[Crossref]
S. Mancini, V. Giovanetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]
[PubMed]
V. Giovanetti, S. Mancini, and P. Tombesi, “Radiation pressure induced Einstein-Podolsky_Rosen paradox,” Europhys. Lett. 54, 559–565, (2001).
[Crossref]
S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglemet and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A., 68, 062317, (2003); W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys.Rev. Lett.91, 130401, SEP (2003).
[Crossref]
H. Rokhsari, .S. M. Spillane, and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Letts. 30, 427–429 (2005).
[Crossref]
M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a Fiber taper to a silica microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, and K. J. Vahala, accepted by Phys. Rev. Lett.
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala K. J, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–929 (2003).
[Crossref]
[PubMed]
S. Mancini, V. Giovanetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]
[PubMed]
S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglemet and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A., 68, 062317, (2003); W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys.Rev. Lett.91, 130401, SEP (2003).
[Crossref]
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Analysis of parametric oscillatory instability in power recycled LIGO interferometer,” Phys Lett. A. 305, 111–124 (2002).
[Crossref]
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A. 287, 331–338 (2001).
[Crossref]
M. Zalalutdinov, et a, “Autoparametric optical drive for micromechanical oscillators,” Appl. Phys. Lett. 79, 695–697. (2001).
[Crossref]
S. W. Schediwy, C. Zhao, and L. Ju, et al, “An experiment to investigate optical spring parametric instability,” Classica Quant. Grav. 21, S1253–S12587 (2004).
[Crossref]
X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanodevice motion at microwave frequencies,” Nature. 421, 496 (2003).
[Crossref]
M. Zalalutdinov, et a, “Autoparametric optical drive for micromechanical oscillators,” Appl. Phys. Lett. 79, 695–697. (2001).
[Crossref]
S. W. Schediwy, C. Zhao, and L. Ju, et al, “An experiment to investigate optical spring parametric instability,” Classica Quant. Grav. 21, S1253–S12587 (2004).
[Crossref]
V. Giovanetti, S. Mancini, and P. Tombesi, “Radiation pressure induced Einstein-Podolsky_Rosen paradox,” Europhys. Lett. 54, 559–565, (2001).
[Crossref]
V. B. Braginsky, I. I. Minakova, and P. M. Stepunin, “Absolute measurement of energy and power in optical spectrum according to electromagnetic pressure,” Instrum. Exper. Tech-U. 3, 658–663 (1965).
V. S. Ilchenko and M. L. Gorodetsky, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala K. J, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–929 (2003).
[Crossref]
[PubMed]
B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature (London), 413, 400 (2001).
[Crossref]
X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanodevice motion at microwave frequencies,” Nature. 421, 496 (2003).
[Crossref]
C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature. 432, 1002–1005, (2004).
[Crossref]
[PubMed]
H. Rokhsari, .S. M. Spillane, and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Letts. 30, 427–429 (2005).
[Crossref]
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Analysis of parametric oscillatory instability in power recycled LIGO interferometer,” Phys Lett. A. 305, 111–124 (2002).
[Crossref]
W. Kells and E. D’Ambrosio, “Considerations on parametric instability in Fabry-Perot interferometer,” Phys. Lett. A. 299, 326–330 (2002).
[Crossref]
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Phys. Lett. A. 287, 331–338 (2001).
[Crossref]
I. Tittonen, et al, “Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits,” Phys. Rev. A. 59, 1038 (1999);
[Crossref]
S. Mancini, V. Giovanetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]
[PubMed]
A. Dorsel, J. D. Mccullen, and P. Meystre, et al. “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51, 1550–1553 (1983).
[Crossref]
M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a Fiber taper to a silica microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]
[PubMed]
V. B. Braginsky, A. B. Manukin, and M. Y. Tikhonov, “Investigation of dissipative Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP-USSR. 31, 829–830 (1970).
V. B. Braginsky and A. B. Manukin, “Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP-USSR. 25, 653–655 (1967).
The characteristics of the overall waveguide-resonator system can be viewed as an optical modulator that is driven by this oscillation. This modulator has a nonlinear transfer function that manifests itself (in the modulated pump power) through the appearance of harmonics of the characteristic mechanical eigen-frequencies. These harmonics are easily observed upon detection of the modulated pump (see Fig. 2).
For f (d)<0, i.e. a red shift of the pump frequency with respect to the cavity mode, the phase of the radiation pressure variations actually damps or “cools” the vibrations. Note that no external feedback system is necessary here to damp the vibrations or “cool” the resonator. The feedback system is inherent to the coupling mechanism. Due to the high quality factor of our cavities (Q~10 million) the “red shifted” tail of the optical mode is not thermally stable (see H. Rokhsariet. al. “Loss characterization in micro-cavities using the thermal bistability effect.Applied Physics Letters85, 3029–3031 (2004)). Replacing the cavity material (silica) with a negative thermo-optic coefficient material would stabilize the red shifted tail and cavity-cooling induced by radiation pressure effects could be observable.
[Crossref]
For the sample tested, it is calculated that radial variations of about 10 picometers will shift the resonant frequency of the excited optical mode by its linewidth.
T. J. Kippenberg, H. Rokhsari, T. Carmon, and K. J. Vahala, accepted by Phys. Rev. Lett.
We note that as evident in the renderings provided in Figs. 1 and 2, the n=3 mechanical mode has a strong radial component to its motion and hence understanding of its excitation by way of radiation pressure (which itself is primarily radial in direction) is straightforward. In contrast, the n=1 mode motion is transverse, requiring a different method of force transduction. The details here, including threshold calculations, will be presented in a forthcoming article where it is shown that minute offsets of the optical mode from the equatorial plane provide a moment arm for action of radiation pressure. The resulting torque induces the transverse motion associated with the n=1 mode. Modelling, including an SEM measurement of the offset, confirms this mechanism.
S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglemet and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A., 68, 062317, (2003); W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys.Rev. Lett.91, 130401, SEP (2003).
[Crossref]