Abstract

We demonstrate the application of a Fluorescence Intensity Confocal Optical Microscopy technique to the determination of the relative erbium ion distribution in optical fibers. As well as being able to acquire two dimensional profiles of the relative erbium ion distribution, this method can also provide valuable information on a sub-micron level regarding physical and optogeometric parameters of the examined samples.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multicomponent analysis using a confocal Raman microscope

Zhengyuan Tang, Sinead J. Barton, Tomas E. Ward, John P. Lowry, Michelle M. Doran, Hugh J. Byrne, and Bryan M. Hennelly
Appl. Opt. 57(22) E118-E130 (2018)

Micro-fluorescence lifetime and spectral imaging of ytterbium doped laser materials

T. Schreiber, S. Kuhn, G. Feldkamp, A. Schwuchow, K. Schuster, S. Hein, R. Eberhardt, and A. Tünnermann
Opt. Express 26(25) 32417-32432 (2018)

Single crystal Er3+ : YAG fibers with tailored refractive index profiles

L. Cheng, T. Chick, J. Chapman, E. F. C. Dreyer, C. D. Nie, S. Bera, J. A. Harrington, and S. C. Rand
Appl. Opt. 57(2) 362-370 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Michel J.F. Digonnet, Rare-earth-doped fiber lasers and amplifiers (2nd ed, Marcel Dekker, New York, 2001).
    [Crossref]
  2. E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 8, 1730–1741(1990).
    [Crossref]
  3. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum. Electron. 27, 1004–1010 (1991).
    [Crossref]
  4. J. C. Martin, “Erbium transversal distribution influence on the effectiveness of a doped fiber: optimization of its performance,” Opt. Commun. 194, 331–339 (2001).
    [Crossref]
  5. N. Kagi, A. Oyobe, and K. Nakamura, “Gain characteristics of Er3+ doped fiber with a quasi-confined structure,” IEEE J. Lightwave Technol. 8, 1319–1322 (1990).
    [Crossref]
  6. T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3, 721–723 (1991).
    [Crossref]
  7. D. T. Bowron, R. J. Newport, J. S. Rigden, E. J. Tarbox, and M. Oversluizen, “An X-ray absorption study of doped silicate glass, fiber optic performs,” J. Mat. Sci. 38, 485–490 (1996).
    [Crossref]
  8. A. C. Pugh, R. P. Stratton, and D. B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibers,” J. Mat. Sci. 29, 1036–1040 (1994).
    [Crossref]
  9. S. Rogard, A. Bulou, H. Poignant, and M. Rousseau, “Non-destructive concentration measurements of erbium-doped ZBLAN fluorozirconate glass,” Opt. Mat. 4, 557–563 (1995).
    [Crossref]
  10. A. Othonos, J. Wheeldon, and M. Hubert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
    [Crossref]
  11. N. Groothoff, J. Canning, T. Ryan, K. Lyytikainen, and H. Inglis, “Distributed photonic crystal fiber (DFB-PCF) laser,” Opt. Express,  13, 2924–2930 (2005)
    [Crossref] [PubMed]
  12. B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” IEEE J. Lightwave Technol. 9, 220–227 (1991)
    [Crossref]
  13. B. J. Ainslie, J. R. Armitage, S. P. Craig, and B. Wakefield, “Fabrication and optimisation of the erbium distribution in silica based doped fibers,” in Proceedings of IEE Fourteenth European Conference on Optical Communication (Brighton, UK, 1988) pp.62–65.
  14. A. Roberts, E. Ampem-Lassen, A. Barty, K.A. Nugent, G.W. Baxter, N.M. Dragomir, and S.T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
    [Crossref]

2005 (1)

2002 (1)

2001 (1)

J. C. Martin, “Erbium transversal distribution influence on the effectiveness of a doped fiber: optimization of its performance,” Opt. Commun. 194, 331–339 (2001).
[Crossref]

1996 (1)

D. T. Bowron, R. J. Newport, J. S. Rigden, E. J. Tarbox, and M. Oversluizen, “An X-ray absorption study of doped silicate glass, fiber optic performs,” J. Mat. Sci. 38, 485–490 (1996).
[Crossref]

1995 (2)

S. Rogard, A. Bulou, H. Poignant, and M. Rousseau, “Non-destructive concentration measurements of erbium-doped ZBLAN fluorozirconate glass,” Opt. Mat. 4, 557–563 (1995).
[Crossref]

A. Othonos, J. Wheeldon, and M. Hubert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[Crossref]

1994 (1)

A. C. Pugh, R. P. Stratton, and D. B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibers,” J. Mat. Sci. 29, 1036–1040 (1994).
[Crossref]

1991 (3)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum. Electron. 27, 1004–1010 (1991).
[Crossref]

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3, 721–723 (1991).
[Crossref]

B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” IEEE J. Lightwave Technol. 9, 220–227 (1991)
[Crossref]

1990 (2)

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 8, 1730–1741(1990).
[Crossref]

N. Kagi, A. Oyobe, and K. Nakamura, “Gain characteristics of Er3+ doped fiber with a quasi-confined structure,” IEEE J. Lightwave Technol. 8, 1319–1322 (1990).
[Crossref]

Ainslie, B. J.

B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” IEEE J. Lightwave Technol. 9, 220–227 (1991)
[Crossref]

B. J. Ainslie, J. R. Armitage, S. P. Craig, and B. Wakefield, “Fabrication and optimisation of the erbium distribution in silica based doped fibers,” in Proceedings of IEE Fourteenth European Conference on Optical Communication (Brighton, UK, 1988) pp.62–65.

Ampem-Lassen, E.

Armitage, J. R.

B. J. Ainslie, J. R. Armitage, S. P. Craig, and B. Wakefield, “Fabrication and optimisation of the erbium distribution in silica based doped fibers,” in Proceedings of IEE Fourteenth European Conference on Optical Communication (Brighton, UK, 1988) pp.62–65.

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum. Electron. 27, 1004–1010 (1991).
[Crossref]

Barty, A.

Baxter, G.W.

Bowron, D. T.

D. T. Bowron, R. J. Newport, J. S. Rigden, E. J. Tarbox, and M. Oversluizen, “An X-ray absorption study of doped silicate glass, fiber optic performs,” J. Mat. Sci. 38, 485–490 (1996).
[Crossref]

Bulou, A.

S. Rogard, A. Bulou, H. Poignant, and M. Rousseau, “Non-destructive concentration measurements of erbium-doped ZBLAN fluorozirconate glass,” Opt. Mat. 4, 557–563 (1995).
[Crossref]

Canning, J.

Craig, S. P.

B. J. Ainslie, J. R. Armitage, S. P. Craig, and B. Wakefield, “Fabrication and optimisation of the erbium distribution in silica based doped fibers,” in Proceedings of IEE Fourteenth European Conference on Optical Communication (Brighton, UK, 1988) pp.62–65.

Desurvire, E.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 8, 1730–1741(1990).
[Crossref]

Digonnet, Michel J.F.

Michel J.F. Digonnet, Rare-earth-doped fiber lasers and amplifiers (2nd ed, Marcel Dekker, New York, 2001).
[Crossref]

Dragomir, N.M.

Giles, C. R.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 8, 1730–1741(1990).
[Crossref]

Groothoff, N.

Hubert, M.

A. Othonos, J. Wheeldon, and M. Hubert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[Crossref]

Huntington, S.T.

Inglis, H.

Kagi, N.

N. Kagi, A. Oyobe, and K. Nakamura, “Gain characteristics of Er3+ doped fiber with a quasi-confined structure,” IEEE J. Lightwave Technol. 8, 1319–1322 (1990).
[Crossref]

Kanamori, H.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3, 721–723 (1991).
[Crossref]

Kashiwada, T.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3, 721–723 (1991).
[Crossref]

Kougo, T.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3, 721–723 (1991).
[Crossref]

Laming, R. I.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum. Electron. 27, 1004–1010 (1991).
[Crossref]

Lewis, D. B.

A. C. Pugh, R. P. Stratton, and D. B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibers,” J. Mat. Sci. 29, 1036–1040 (1994).
[Crossref]

Lyytikainen, K.

Martin, J. C.

J. C. Martin, “Erbium transversal distribution influence on the effectiveness of a doped fiber: optimization of its performance,” Opt. Commun. 194, 331–339 (2001).
[Crossref]

Morkel, P. R

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum. Electron. 27, 1004–1010 (1991).
[Crossref]

Nakamura, K.

N. Kagi, A. Oyobe, and K. Nakamura, “Gain characteristics of Er3+ doped fiber with a quasi-confined structure,” IEEE J. Lightwave Technol. 8, 1319–1322 (1990).
[Crossref]

Newport, R. J.

D. T. Bowron, R. J. Newport, J. S. Rigden, E. J. Tarbox, and M. Oversluizen, “An X-ray absorption study of doped silicate glass, fiber optic performs,” J. Mat. Sci. 38, 485–490 (1996).
[Crossref]

Nishimura, M.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3, 721–723 (1991).
[Crossref]

Nugent, K.A.

Othonos, A.

A. Othonos, J. Wheeldon, and M. Hubert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[Crossref]

Oversluizen, M.

D. T. Bowron, R. J. Newport, J. S. Rigden, E. J. Tarbox, and M. Oversluizen, “An X-ray absorption study of doped silicate glass, fiber optic performs,” J. Mat. Sci. 38, 485–490 (1996).
[Crossref]

Oyobe, A.

N. Kagi, A. Oyobe, and K. Nakamura, “Gain characteristics of Er3+ doped fiber with a quasi-confined structure,” IEEE J. Lightwave Technol. 8, 1319–1322 (1990).
[Crossref]

Poignant, H.

S. Rogard, A. Bulou, H. Poignant, and M. Rousseau, “Non-destructive concentration measurements of erbium-doped ZBLAN fluorozirconate glass,” Opt. Mat. 4, 557–563 (1995).
[Crossref]

Pugh, A. C.

A. C. Pugh, R. P. Stratton, and D. B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibers,” J. Mat. Sci. 29, 1036–1040 (1994).
[Crossref]

Rigden, J. S.

D. T. Bowron, R. J. Newport, J. S. Rigden, E. J. Tarbox, and M. Oversluizen, “An X-ray absorption study of doped silicate glass, fiber optic performs,” J. Mat. Sci. 38, 485–490 (1996).
[Crossref]

Roberts, A.

Rogard, S.

S. Rogard, A. Bulou, H. Poignant, and M. Rousseau, “Non-destructive concentration measurements of erbium-doped ZBLAN fluorozirconate glass,” Opt. Mat. 4, 557–563 (1995).
[Crossref]

Rousseau, M.

S. Rogard, A. Bulou, H. Poignant, and M. Rousseau, “Non-destructive concentration measurements of erbium-doped ZBLAN fluorozirconate glass,” Opt. Mat. 4, 557–563 (1995).
[Crossref]

Ryan, T.

Shigematsu, M.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3, 721–723 (1991).
[Crossref]

Stratton, R. P.

A. C. Pugh, R. P. Stratton, and D. B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibers,” J. Mat. Sci. 29, 1036–1040 (1994).
[Crossref]

Tarbox, E. J.

D. T. Bowron, R. J. Newport, J. S. Rigden, E. J. Tarbox, and M. Oversluizen, “An X-ray absorption study of doped silicate glass, fiber optic performs,” J. Mat. Sci. 38, 485–490 (1996).
[Crossref]

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum. Electron. 27, 1004–1010 (1991).
[Crossref]

Wakefield, B.

B. J. Ainslie, J. R. Armitage, S. P. Craig, and B. Wakefield, “Fabrication and optimisation of the erbium distribution in silica based doped fibers,” in Proceedings of IEE Fourteenth European Conference on Optical Communication (Brighton, UK, 1988) pp.62–65.

Wheeldon, J.

A. Othonos, J. Wheeldon, and M. Hubert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[Crossref]

Zyskind, J. L.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 8, 1730–1741(1990).
[Crossref]

IEEE J. Lightwave Technol. (3)

N. Kagi, A. Oyobe, and K. Nakamura, “Gain characteristics of Er3+ doped fiber with a quasi-confined structure,” IEEE J. Lightwave Technol. 8, 1319–1322 (1990).
[Crossref]

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 8, 1730–1741(1990).
[Crossref]

B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” IEEE J. Lightwave Technol. 9, 220–227 (1991)
[Crossref]

IEEE J. Quantum. Electron. (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum. Electron. 27, 1004–1010 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3, 721–723 (1991).
[Crossref]

J. Mat. Sci. (2)

D. T. Bowron, R. J. Newport, J. S. Rigden, E. J. Tarbox, and M. Oversluizen, “An X-ray absorption study of doped silicate glass, fiber optic performs,” J. Mat. Sci. 38, 485–490 (1996).
[Crossref]

A. C. Pugh, R. P. Stratton, and D. B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibers,” J. Mat. Sci. 29, 1036–1040 (1994).
[Crossref]

Opt. Commun. (1)

J. C. Martin, “Erbium transversal distribution influence on the effectiveness of a doped fiber: optimization of its performance,” Opt. Commun. 194, 331–339 (2001).
[Crossref]

Opt. Eng. (1)

A. Othonos, J. Wheeldon, and M. Hubert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mat. (1)

S. Rogard, A. Bulou, H. Poignant, and M. Rousseau, “Non-destructive concentration measurements of erbium-doped ZBLAN fluorozirconate glass,” Opt. Mat. 4, 557–563 (1995).
[Crossref]

Other (2)

Michel J.F. Digonnet, Rare-earth-doped fiber lasers and amplifiers (2nd ed, Marcel Dekker, New York, 2001).
[Crossref]

B. J. Ainslie, J. R. Armitage, S. P. Craig, and B. Wakefield, “Fabrication and optimisation of the erbium distribution in silica based doped fibers,” in Proceedings of IEE Fourteenth European Conference on Optical Communication (Brighton, UK, 1988) pp.62–65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental arrangement
Fig. 2.
Fig. 2. (a) Partial energy level diagram for erbium in germanosilicate host. (b) The 550 nm fluorescence peak collected by the Raman system.
Fig. 3.
Fig. 3. Two dimensional fluorescence profile detected from the endface of the freshly cleaved EDFA sample.
Fig. 4.
Fig. 4. A transverse profile through the centre of the fiber showing the relative erbium ion distribution. Also shown is the average radial refractive index profile determined using QPM
Fig. 5.
Fig. 5. Two dimensional fluorescence profile detected from the endface of the freshly cleaved Er35 fiber
Fig. 6.
Fig. 6. Two dimensional fluorescence profile detected from the endface of the freshly cleaved PCF sample.

Metrics