Abstract

We introduce a novel method of attaining all-optical beam control in an optofluidic device by displacing an optically trapped micro-sphere though a light beam. The micro-sphere causes the beam to be refracted by various degrees as a function of the sphere position, providing tunable attenuation and beam-steering in the device. The device itself consists of the manipulated light beam extending between two buried waveguides which are on either side of a microfluidic channel. This channel contains the micro-spheres which are suspended in water. We simulate this geometry using the Finite Difference Time Domain method and find good agreement between simulation and experiment.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flow effects in the laser-induced thermal loading of optical traps and optofluidic devices

B. del Rosal, C. Sun, Y. Yan, M.D. Mackenzie, C. Lu, A. A. Bettiol, A.K. Kar, and D. Jaque
Opt. Express 22(20) 23938-23954 (2014)

Optofluidic trapping and transport on solid core waveguides within a microfluidic device

Bradley S. Schmidt, Allen H. J. Yang, David Erickson, and Michal Lipson
Opt. Express 15(22) 14322-14334 (2007)

Optofluidics in bio-imaging applications

Sihui Chen, Rui Hao, Yi Zhang, and Hui Yang
Photon. Res. 7(5) 532-542 (2019)

References

  • View by:
  • |
  • |
  • |

  1. http://www.optofluidics.caltech.edu/
  2. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12, 5424–5433 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5424
    [Crossref] [PubMed]
  3. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
    [Crossref]
  4. C. Grillet, P. Domachuk, V. Ta’eed, E. Magi, J. A. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 125440–5447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5440
    [Crossref] [PubMed]
  5. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” App. Phys. Lett. 841838–1840 (2004)
    [Crossref]
  6. P. Mach, T. Krupenkin, S. Yang, and J. A. Rogers, “Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels,” App. Phys. Lett. 81202–204 (2002)
    [Crossref]
  7. K. T. Kotz, Y. Gu, and G. W. Faris, “Microfluidics with near infrared handling,” Proc CLEO CFF5 (2005)
  8. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. & Act. A 104222–228 (2003)
    [Crossref]
  9. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. NAS USA 944853–4860 (1997)
    [Crossref]
  10. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles” Opt. Lett. 11288–290 (1986)
    [Crossref] [PubMed]
  11. K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
    [Crossref] [PubMed]
  12. K. C. Neuman and S. M. Block, “Optical Trapping,” Rev. Sci. Inst. 752787–2809 (2004)
    [Crossref]
  13. C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, “Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap,” Opt. Express 132634–2642 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2634
    [Crossref] [PubMed]
  14. W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12, 6440–6445 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6440
    [Crossref] [PubMed]
  15. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optic regime,” Biophys. J.,  61569–582 (1992)
    [Crossref] [PubMed]
  16. A. Mazolli, P.A.M. Neto, and H.M. Nussenzweig, “Theory of trapping forces in optical tweezers” Proc. Roy, Soc. Lon. A,  459, 3021–3041 (2003)
    [Crossref]

2005 (3)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
[Crossref]

K. T. Kotz, Y. Gu, and G. W. Faris, “Microfluidics with near infrared handling,” Proc CLEO CFF5 (2005)

C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, “Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap,” Opt. Express 132634–2642 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2634
[Crossref] [PubMed]

2004 (5)

2003 (2)

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. & Act. A 104222–228 (2003)
[Crossref]

A. Mazolli, P.A.M. Neto, and H.M. Nussenzweig, “Theory of trapping forces in optical tweezers” Proc. Roy, Soc. Lon. A,  459, 3021–3041 (2003)
[Crossref]

2002 (1)

P. Mach, T. Krupenkin, S. Yang, and J. A. Rogers, “Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels,” App. Phys. Lett. 81202–204 (2002)
[Crossref]

2000 (1)

K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
[Crossref] [PubMed]

1997 (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. NAS USA 944853–4860 (1997)
[Crossref]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optic regime,” Biophys. J.,  61569–582 (1992)
[Crossref] [PubMed]

1986 (1)

Alkeskjold, T. T.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
[Crossref]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. NAS USA 944853–4860 (1997)
[Crossref]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optic regime,” Biophys. J.,  61569–582 (1992)
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles” Opt. Lett. 11288–290 (1986)
[Crossref] [PubMed]

Bjarklev, A.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
[Crossref]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical Trapping,” Rev. Sci. Inst. 752787–2809 (2004)
[Crossref]

Bolger, J. A.

Chiou, P. Y.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. & Act. A 104222–228 (2003)
[Crossref]

Chu, S.

Cooper-White, J.

Domachuk, P.

Dziedzic, J. M.

Eggleton, B. J.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
[Crossref]

Faris, G. W.

K. T. Kotz, Y. Gu, and G. W. Faris, “Microfluidics with near infrared handling,” Proc CLEO CFF5 (2005)

Gibson, U.

Greulich, K. O.

K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
[Crossref] [PubMed]

Grillet, C.

Gu, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” App. Phys. Lett. 841838–1840 (2004)
[Crossref]

Gu, Y.

K. T. Kotz, Y. Gu, and G. W. Faris, “Microfluidics with near infrared handling,” Proc CLEO CFF5 (2005)

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
[Crossref]

Hoffmann, A.

K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
[Crossref] [PubMed]

Horste, G. M. Z.

K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
[Crossref] [PubMed]

Jensen-McMullin, C.

Kim, C. J.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. & Act. A 104222–228 (2003)
[Crossref]

Kotz, K. T.

K. T. Kotz, Y. Gu, and G. W. Faris, “Microfluidics with near infrared handling,” Proc CLEO CFF5 (2005)

Krupenkin, T.

P. Mach, T. Krupenkin, S. Yang, and J. A. Rogers, “Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels,” App. Phys. Lett. 81202–204 (2002)
[Crossref]

Kuhlmey, B. T.

Lee, H. P.

Lyons, E. R.

Mach, P.

P. Mach, T. Krupenkin, S. Yang, and J. A. Rogers, “Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels,” App. Phys. Lett. 81202–204 (2002)
[Crossref]

Magi, E.

Mazolli, A.

A. Mazolli, P.A.M. Neto, and H.M. Nussenzweig, “Theory of trapping forces in optical tweezers” Proc. Roy, Soc. Lon. A,  459, 3021–3041 (2003)
[Crossref]

Monajembashi, S.

K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
[Crossref] [PubMed]

Moon, H.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. & Act. A 104222–228 (2003)
[Crossref]

Neto, P.A.M.

A. Mazolli, P.A.M. Neto, and H.M. Nussenzweig, “Theory of trapping forces in optical tweezers” Proc. Roy, Soc. Lon. A,  459, 3021–3041 (2003)
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical Trapping,” Rev. Sci. Inst. 752787–2809 (2004)
[Crossref]

Nguyen, H. C.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” App. Phys. Lett. 841838–1840 (2004)
[Crossref]

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
[Crossref]

Nussenzweig, H.M.

A. Mazolli, P.A.M. Neto, and H.M. Nussenzweig, “Theory of trapping forces in optical tweezers” Proc. Roy, Soc. Lon. A,  459, 3021–3041 (2003)
[Crossref]

Pilarczyk, G.

K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
[Crossref] [PubMed]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
[Crossref]

Rodd, L. E.

Rogers, J. A.

P. Mach, T. Krupenkin, S. Yang, and J. A. Rogers, “Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels,” App. Phys. Lett. 81202–204 (2002)
[Crossref]

Rubinsztein-Dunlop, H.

Schafer, B.

K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
[Crossref] [PubMed]

Scolari, L.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
[Crossref]

Singer, W.

Steel, M. J.

Steinvurzel, P.

Sterke, C. M. de

Straub, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” App. Phys. Lett. 841838–1840 (2004)
[Crossref]

Ta’eed, V.

Toshiyoshi, H.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. & Act. A 104222–228 (2003)
[Crossref]

Uhl, V.

K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
[Crossref] [PubMed]

White, T. P.

Wu, M. C.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. & Act. A 104222–228 (2003)
[Crossref]

Yang, S.

P. Mach, T. Krupenkin, S. Yang, and J. A. Rogers, “Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels,” App. Phys. Lett. 81202–204 (2002)
[Crossref]

App. Phys. Lett. (2)

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” App. Phys. Lett. 841838–1840 (2004)
[Crossref]

P. Mach, T. Krupenkin, S. Yang, and J. A. Rogers, “Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels,” App. Phys. Lett. 81202–204 (2002)
[Crossref]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optic regime,” Biophys. J.,  61569–582 (1992)
[Crossref] [PubMed]

IEEE Photonics Technol Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal filled photonic crystal fiber,” IEEE Photonics Technol Lett. 17819–821 (2005)
[Crossref]

J. Microsc. (1)

K. O. Greulich, G. Pilarczyk, A. Hoffmann, G. M. Z. Horste, B. Schafer, V. Uhl, and S. Monajembashi, “Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules,” J. Microsc.,  198182–187 (2000)
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Proc CLEO CFF5 (1)

K. T. Kotz, Y. Gu, and G. W. Faris, “Microfluidics with near infrared handling,” Proc CLEO CFF5 (2005)

Proc. NAS USA (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. NAS USA 944853–4860 (1997)
[Crossref]

Proc. Roy, Soc. Lon. A (1)

A. Mazolli, P.A.M. Neto, and H.M. Nussenzweig, “Theory of trapping forces in optical tweezers” Proc. Roy, Soc. Lon. A,  459, 3021–3041 (2003)
[Crossref]

Rev. Sci. Inst. (1)

K. C. Neuman and S. M. Block, “Optical Trapping,” Rev. Sci. Inst. 752787–2809 (2004)
[Crossref]

Sens. & Act. A (1)

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. & Act. A 104222–228 (2003)
[Crossref]

Other (1)

http://www.optofluidics.caltech.edu/

Supplementary Material (1)

» Media 1: MPG (878 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The experimental optofluidic geometry, comprising a pair of waveguides separated by a microfluidic channel. A probe beam propagates between the waveguides, being influenced by the contents of the channel. In this paper we utilize standard single mode optical fiber for the waveguides.
Fig. 2.
Fig. 2. Schematic process diagram for the fabrication of the semi-planar buried fiber device. a) The SMF is suspended taut 300 μm above a glass substrate. b) A layer of photo-polymer (NOA-16) is poured over the substrate (and SMF), allowed to settle under gravity then cured. As a result, the SMF is buried some 300 μm below the surface of the polymer. c) A channel is cut in the hard photo-polymer with a dicing saw, cleaving the fiber and giving the optofluidic geometry shown in Fig. 1.
Fig. 3.
Fig. 3. A schematic of the bulk optics used to deliver the trapping beam to the buried fiber device. The beam is generated by the Q-switched vanadate laser at right. The beam is brought to the sample using an inverted microscope setup and is focused using a 40X, 0.65 NA microscope objective. The sample is illuminated from above and examined though the inverted microscope using a CCD camera. Spatial control of the sample is delivered by a piezo actuator in the plane and a stepper motor out of the plane of the sample. The beam path is shown in yellow.
Fig. 4.
Fig. 4. A photograph and cross sectional schematics of the experimental geometry. In the photograph a micro-sphere is trapped inside the probe beam between the two buried SMFs. The horizontal red striations are from the signal beam being scattered out-of-plane by the sphere.
Fig. 5.
Fig. 5. A representative output spectrum of the device with a micro-sphere displacement of 5.8 μm. The wavelengths of the spectrum are divided into two regions: above and below the single mode cutoff of the SMF. In the multimode propagation region, the field output is highly dependent on wavelength, resulting in sharp spectral features in the output spectrum. In the single mode region, the field output is always shaped as the fundamental mode of the fiber, resulting in slowly varying spectral features.
Fig. 6.
Fig. 6. The insertion loss of the buried fiber device for various positions of the trapped micro-sphere, probed at a wavelength of 1.5 μm. Experimental data is shown with the solid line; the results of the numerical simulation are shown with the dashed line. Good agreement is seen between the experimental and numerical curves. At top the three transmission regimes are identified.
Fig. 7.
Fig. 7. FDTD field outputs for the various transmission regimes. The rectangular outline in the top center of the right hand portion of the figure shows the position and transverse extent of the output fiber. Note the different scales on each axis, resulting in the micro-sphere looking ovoid in these pictures. On the left is insertion loss curve from Fig. 7 and an arrow indicating the point on that curve the FDTD field output (at right). a) On axis transmission: the micro sphere is centered in the probe beam and is acting as a spherical lens, providing enhanced coupling. b) Off axis: the micro-sphere is steering the beam away from the core of the output SMF. c) Leaving beam: the micro-sphere is only slightly perturbing the probe beam, allowing most of the light to be collected.
Fig. 8.
Fig. 8. An animation showing the FDTD field output changing as the micro-sphere is moved across the probe beam. Notice how, as the sphere moves from the center of the beam, the light is steered away from the core of the output SMF. As the sphere is moved further out of the beam, the light returns to the core of the SMF. [Media 1]

Metrics