B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[Crossref]
[PubMed]
T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77, 125–128 (2003).
[Crossref]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahighresolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 1–10 (2001).
[Crossref]
S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]
J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A. 11, 1949–1957 (1994).
[Crossref]
L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans,” App. Opt. 31, 592–599 (1992).
[Crossref]
L. N. Thibos, A. Bradley, and X. Zhang, “The effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
[Crossref]
[PubMed]
P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[Crossref]
[PubMed]
P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]
[PubMed]
B. Howland and H. C. Howland, “Subjective measurement of high order aberrations of the eye,” Science 193, 580–582 (1976).
[Crossref]
[PubMed]
W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref]
[PubMed]
A. van Meeteren, “Calculations of the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[Crossref]
M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 687–703 (1961).
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 1–10 (2001).
[Crossref]
P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1400 (2000).
[Crossref]
P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[Crossref]
I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A. 15, 2466–2476 (1998).
[Crossref]
N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
[Crossref]
J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[Crossref]
[PubMed]
P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” Journal of Vision1, 1–8 (2001), http://journalofvision.org/1/1/1.
[Crossref]
I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A. 15, 2466–2476 (1998).
[Crossref]
P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” Journal of Vision1, 1–8 (2001), http://journalofvision.org/1/1/1.
[Crossref]
J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A. 11, 1949–1957 (1994).
[Crossref]
L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans,” App. Opt. 31, 592–599 (1992).
[Crossref]
L. N. Thibos, A. Bradley, and X. Zhang, “The effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
[Crossref]
[PubMed]
P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]
[PubMed]
S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]
P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[Crossref]
[PubMed]
L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[Crossref]
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77, 125–128 (2003).
[Crossref]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahighresolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag Berlin Heidelberg New York, 1980).
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77, 125–128 (2003).
[Crossref]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahighresolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahighresolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1400 (2000).
[Crossref]
J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A. 11, 1949–1957 (1994).
[Crossref]
J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A. 11, 1949–1957 (1994).
[Crossref]
P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[Crossref]
P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” Journal of Vision1, 1–8 (2001), http://journalofvision.org/1/1/1.
[Crossref]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]
[PubMed]
B. Howland and H. C. Howland, “Subjective measurement of high order aberrations of the eye,” Science 193, 580–582 (1976).
[Crossref]
[PubMed]
I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A. 15, 2466–2476 (1998).
[Crossref]
W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahighresolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77, 125–128 (2003).
[Crossref]
L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[Crossref]
[PubMed]
Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag Berlin Heidelberg New York, 1980).
J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A. 11, 1949–1957 (1994).
[Crossref]
L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[Crossref]
[PubMed]
L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[Crossref]
[PubMed]
S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]
S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahighresolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1400 (2000).
[Crossref]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahighresolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[Crossref]
[PubMed]
M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 687–703 (1961).
[PubMed]
T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77, 125–128 (2003).
[Crossref]
T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77, 125–128 (2003).
[Crossref]
L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans,” App. Opt. 31, 592–599 (1992).
[Crossref]
L. N. Thibos, A. Bradley, and X. Zhang, “The effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
[Crossref]
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77, 125–128 (2003).
[Crossref]
A. van Meeteren, “Calculations of the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[Crossref]
H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 1–10 (2001).
[Crossref]
P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” Journal of Vision1, 1–8 (2001), http://journalofvision.org/1/1/1.
[Crossref]
T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77, 125–128 (2003).
[Crossref]
L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans,” App. Opt. 31, 592–599 (1992).
[Crossref]
L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans,” App. Opt. 31, 592–599 (1992).
[Crossref]
L. N. Thibos, A. Bradley, and X. Zhang, “The effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
[Crossref]
[PubMed]
L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans,” App. Opt. 31, 592–599 (1992).
[Crossref]
T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77, 125–128 (2003).
[Crossref]
M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 687–703 (1961).
[PubMed]
G. Walsh, W. N. Charman, and H. C. Howland, “Objetive technique for the determination of monochromatic aberrations of the human eyes,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[Crossref]
[PubMed]
Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
[Crossref]
[PubMed]
J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[Crossref]
[PubMed]
N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
[Crossref]
P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1400 (2000).
[Crossref]
H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 1–10 (2001).
[Crossref]
J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A. 11, 1949–1957 (1994).
[Crossref]
I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A. 15, 2466–2476 (1998).
[Crossref]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahighresolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
A. van Meeteren, “Calculations of the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[Crossref]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004)
[Crossref]
[PubMed]
P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[Crossref]
L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003).
[Crossref]
[PubMed]
L. N. Thibos, A. Bradley, and X. Zhang, “The effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68, 599–607 (1991).
[Crossref]
[PubMed]
B. Howland and H. C. Howland, “Subjective measurement of high order aberrations of the eye,” Science 193, 580–582 (1976).
[Crossref]
[PubMed]
P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[Crossref]
[PubMed]
W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[Crossref]
[PubMed]
P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]
[PubMed]
S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[Crossref]
Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag Berlin Heidelberg New York, 1980).
P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” Journal of Vision1, 1–8 (2001), http://journalofvision.org/1/1/1.
[Crossref]