X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
R. Slavik, S. Doucet, and S. LaRochelle, “High-Performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol. 21, 1059–65 (2003).
[Crossref]
A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of a Bragg grating and its applications to Fabry-Perot cavities,” J. Opt. Soc. Ame. A 20, 273–81 (2003).
[Crossref]
S. Doucet, R. Slavik, and S. LaRochelle, “High-Finesse large band Fabry-Perot fiber filter with superimposed chirped Bragg gratings,” Electron. Lett. 38, 402–3 (2002).
[Crossref]
T. Erdogan, “Fiber Grating Spectra,” Journal of Lightwave Technology, 15, 1277–94 (1997).
[Crossref]
C. Sung-Hak, I Yokota, and M. Obara, “Free spectral range variation of a broadband, high-finesse, multi-channel Fabry-Perot filter using chirped fiber Bragg gratings,” Jpn. J. Appl. Phys. Part 1, 36, 6383–7 (1997).
[Crossref]
G. Town, K. Sugden, J. Williams, I. Bennion, and S. B. Poole, “Wide-Band Fabry-Perot-Like Filters in Optical Fiber,” IEEE Photon. Technol. Letters, 7, 78–80 (1995).
[Crossref]
L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–67 (1993).
[Crossref]
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
G. Town, K. Sugden, J. Williams, I. Bennion, and S. B. Poole, “Wide-Band Fabry-Perot-Like Filters in Optical Fiber,” IEEE Photon. Technol. Letters, 7, 78–80 (1995).
[Crossref]
G. Brochu, R. Slavik, and S. LaRochelle, “Ultra-Compact 52 mW 50-GHz spaced 16 channels narrow-line and single polarization fiber laser,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), postdeadline paper PDP22.
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
R. Slavik, S. Doucet, and S. LaRochelle, “High-Performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol. 21, 1059–65 (2003).
[Crossref]
S. Doucet, R. Slavik, and S. LaRochelle, “High-Finesse large band Fabry-Perot fiber filter with superimposed chirped Bragg gratings,” Electron. Lett. 38, 402–3 (2002).
[Crossref]
T. Erdogan, “Fiber Grating Spectra,” Journal of Lightwave Technology, 15, 1277–94 (1997).
[Crossref]
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of a Bragg grating and its applications to Fabry-Perot cavities,” J. Opt. Soc. Ame. A 20, 273–81 (2003).
[Crossref]
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
R. Slavik, S. Doucet, and S. LaRochelle, “High-Performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol. 21, 1059–65 (2003).
[Crossref]
S. Doucet, R. Slavik, and S. LaRochelle, “High-Finesse large band Fabry-Perot fiber filter with superimposed chirped Bragg gratings,” Electron. Lett. 38, 402–3 (2002).
[Crossref]
G. Brochu, R. Slavik, and S. LaRochelle, “Ultra-Compact 52 mW 50-GHz spaced 16 channels narrow-line and single polarization fiber laser,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), postdeadline paper PDP22.
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of a Bragg grating and its applications to Fabry-Perot cavities,” J. Opt. Soc. Ame. A 20, 273–81 (2003).
[Crossref]
A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of a Bragg grating and its applications to Fabry-Perot cavities,” J. Opt. Soc. Ame. A 20, 273–81 (2003).
[Crossref]
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of a Bragg grating and its applications to Fabry-Perot cavities,” J. Opt. Soc. Ame. A 20, 273–81 (2003).
[Crossref]
C. Sung-Hak, I Yokota, and M. Obara, “Free spectral range variation of a broadband, high-finesse, multi-channel Fabry-Perot filter using chirped fiber Bragg gratings,” Jpn. J. Appl. Phys. Part 1, 36, 6383–7 (1997).
[Crossref]
L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–67 (1993).
[Crossref]
G. Town, K. Sugden, J. Williams, I. Bennion, and S. B. Poole, “Wide-Band Fabry-Perot-Like Filters in Optical Fiber,” IEEE Photon. Technol. Letters, 7, 78–80 (1995).
[Crossref]
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
R. Slavik, S. Doucet, and S. LaRochelle, “High-Performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol. 21, 1059–65 (2003).
[Crossref]
S. Doucet, R. Slavik, and S. LaRochelle, “High-Finesse large band Fabry-Perot fiber filter with superimposed chirped Bragg gratings,” Electron. Lett. 38, 402–3 (2002).
[Crossref]
G. Brochu, R. Slavik, and S. LaRochelle, “Ultra-Compact 52 mW 50-GHz spaced 16 channels narrow-line and single polarization fiber laser,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), postdeadline paper PDP22.
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
G. Town, K. Sugden, J. Williams, I. Bennion, and S. B. Poole, “Wide-Band Fabry-Perot-Like Filters in Optical Fiber,” IEEE Photon. Technol. Letters, 7, 78–80 (1995).
[Crossref]
C. Sung-Hak, I Yokota, and M. Obara, “Free spectral range variation of a broadband, high-finesse, multi-channel Fabry-Perot filter using chirped fiber Bragg gratings,” Jpn. J. Appl. Phys. Part 1, 36, 6383–7 (1997).
[Crossref]
G. Town, K. Sugden, J. Williams, I. Bennion, and S. B. Poole, “Wide-Band Fabry-Perot-Like Filters in Optical Fiber,” IEEE Photon. Technol. Letters, 7, 78–80 (1995).
[Crossref]
G. Town, K. Sugden, J. Williams, I. Bennion, and S. B. Poole, “Wide-Band Fabry-Perot-Like Filters in Optical Fiber,” IEEE Photon. Technol. Letters, 7, 78–80 (1995).
[Crossref]
C. Sung-Hak, I Yokota, and M. Obara, “Free spectral range variation of a broadband, high-finesse, multi-channel Fabry-Perot filter using chirped fiber Bragg gratings,” Jpn. J. Appl. Phys. Part 1, 36, 6383–7 (1997).
[Crossref]
S. Doucet, R. Slavik, and S. LaRochelle, “High-Finesse large band Fabry-Perot fiber filter with superimposed chirped Bragg gratings,” Electron. Lett. 38, 402–3 (2002).
[Crossref]
G. Town, K. Sugden, J. Williams, I. Bennion, and S. B. Poole, “Wide-Band Fabry-Perot-Like Filters in Optical Fiber,” IEEE Photon. Technol. Letters, 7, 78–80 (1995).
[Crossref]
X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev, and I. Bennion, “Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 15, 1111–13 (2003).
[Crossref]
A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of a Bragg grating and its applications to Fabry-Perot cavities,” J. Opt. Soc. Ame. A 20, 273–81 (2003).
[Crossref]
T. Erdogan, “Fiber Grating Spectra,” Journal of Lightwave Technology, 15, 1277–94 (1997).
[Crossref]
C. Sung-Hak, I Yokota, and M. Obara, “Free spectral range variation of a broadband, high-finesse, multi-channel Fabry-Perot filter using chirped fiber Bragg gratings,” Jpn. J. Appl. Phys. Part 1, 36, 6383–7 (1997).
[Crossref]
L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–67 (1993).
[Crossref]
G. Brochu, R. Slavik, and S. LaRochelle, “Ultra-Compact 52 mW 50-GHz spaced 16 channels narrow-line and single polarization fiber laser,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), postdeadline paper PDP22.