Abstract

The mode index and mode field of a triple-core waveguide are simulated by the compact supercell method and the FEM method. The coupling property of LP11 mode is analyzed, for the first time to our knowledge, which is similar to that of LP01 mode except the different coupling length. Both LP01 and LP11 modes can be separated based on their different coupling lengths in the waveguide. When both modes are put into the central port, they will come out on different ports by optimizing the coupler length, and the mode extinction ratio can approach 30dB.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact and fabrication-tolerant polarization splitter based on horizontal triple-slot waveguide

Weifeng Jiang, Xiaohan Sun, and B. M. Azizur Rahman
Appl. Opt. 56(8) 2119-2126 (2017)

Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler

Weifeng Jiang, Fangyuan Cheng, Ji Xu, and Hongdan Wan
J. Opt. Soc. Am. B 35(10) 2532-2540 (2018)

Thermally expanded multicore-fiber-based mode multiplexer/demultiplexer

Thomas Joseph and Joseph John
J. Opt. Soc. Am. B 36(12) 3499-3504 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, J. M. Wiesenfeld, and D. J. Digiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photon. Technol. Lett. 5, 194–197 (1993).
    [Crossref]
  2. C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
    [Crossref]
  3. H. S. Park, S. H. Yun, I. K. Hwang, S. B. Lee, and B. Y. Kim, “All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,” IEEE Photon. Technol. Lett. 13, 460–462 (2001).
    [Crossref]
  4. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
    [Crossref]
  5. S. H. Yun, I. K. Hwang, and B. Y. Kim, “All-fiber tunable filter and laser based on two-mode fiber,” Opt. Lett. 21, 27–29 (1996).
    [Crossref] [PubMed]
  6. W. V. Sorin, B. Y. Kim, and H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett. 11, 581–583 (1986).
    [Crossref] [PubMed]
  7. K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm,” IEEE Photon. Technol. Lett. 14, 501–503 (2002).
    [Crossref]
  8. K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688–1696 (1990).
    [Crossref]
  9. J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, “Strain effects on highly elliptical core two-mode fibers,” Opt. Lett. 12, 732–734 (1987).
    [Crossref] [PubMed]
  10. J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
    [Crossref]
  11. K. Bohnert, G. C. de Wit, and J. Nehring, ”Coherence-tuned interrogation of a remote elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–1031995.
    [Crossref]
  12. K. Bohnert and P. Pequignot, “Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation,” J. Lightwave Technol. 16, 598–6041998.
    [Crossref]
  13. S. K. Sheem, “Optical fiber interferometer with [3x3] directional couplers: analysis,” J. Appl. Phys. 52, 3865–38721981.
    [Crossref]
  14. Y. H. Ja, “A Single-Mode Optical Fiber Ring Resonator using a Planar 3×3 Fiber Coupler and a Sagnac Loop,” J. Lightwave Technol. 12, 1348–13541994.
    [Crossref]
  15. A.M. Liu, C. Q. Wu, Y. D. Gong, and P. Shum, “Dual loop optical buffer based on a 3×3 collinear fiber coupler,” IEEE Photon. Technol. Lett. 16, 2129–2131, 2004.
    [Crossref]
  16. S. Liping and Y. peida, “general analysis of [3x3] optical fiber directional couplers,” Microwave Opt. Technol. Lett. 2, 52–541989.
    [Crossref]
  17. Z. Wang, G. Ren, S. Lou, W. Liang, S. Jian, and S. Guo, “Compact supercell method based on opposite parity for Bragg fibers,” Opt. Express 11, 3542–3549 (2003).
    [Crossref]
  18. G. Ren, Z. Wang, S. Lou, and S. Jian, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11, 1310–1321(2003).
    [Crossref]

2004 (2)

A.M. Liu, C. Q. Wu, Y. D. Gong, and P. Shum, “Dual loop optical buffer based on a 3×3 collinear fiber coupler,” IEEE Photon. Technol. Lett. 16, 2129–2131, 2004.
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
[Crossref]

2003 (2)

2002 (2)

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[Crossref]

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm,” IEEE Photon. Technol. Lett. 14, 501–503 (2002).
[Crossref]

2001 (1)

H. S. Park, S. H. Yun, I. K. Hwang, S. B. Lee, and B. Y. Kim, “All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,” IEEE Photon. Technol. Lett. 13, 460–462 (2001).
[Crossref]

1998 (1)

1996 (1)

1995 (1)

K. Bohnert, G. C. de Wit, and J. Nehring, ”Coherence-tuned interrogation of a remote elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–1031995.
[Crossref]

1994 (2)

Y. H. Ja, “A Single-Mode Optical Fiber Ring Resonator using a Planar 3×3 Fiber Coupler and a Sagnac Loop,” J. Lightwave Technol. 12, 1348–13541994.
[Crossref]

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

1993 (1)

C. D. Poole, J. M. Wiesenfeld, and D. J. Digiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photon. Technol. Lett. 5, 194–197 (1993).
[Crossref]

1990 (1)

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688–1696 (1990).
[Crossref]

1989 (1)

S. Liping and Y. peida, “general analysis of [3x3] optical fiber directional couplers,” Microwave Opt. Technol. Lett. 2, 52–541989.
[Crossref]

1987 (1)

1986 (1)

1981 (1)

S. K. Sheem, “Optical fiber interferometer with [3x3] directional couplers: analysis,” J. Appl. Phys. 52, 3865–38721981.
[Crossref]

Blake, J. N.

Bohnert, K.

K. Bohnert and P. Pequignot, “Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation,” J. Lightwave Technol. 16, 598–6041998.
[Crossref]

K. Bohnert, G. C. de Wit, and J. Nehring, ”Coherence-tuned interrogation of a remote elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–1031995.
[Crossref]

Claus, R. O.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688–1696 (1990).
[Crossref]

de Wit, G. C.

K. Bohnert, G. C. de Wit, and J. Nehring, ”Coherence-tuned interrogation of a remote elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–1031995.
[Crossref]

Demokan, M. S.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
[Crossref]

Digiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

C. D. Poole, J. M. Wiesenfeld, and D. J. Digiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photon. Technol. Lett. 5, 194–197 (1993).
[Crossref]

Gong, Y. D.

A.M. Liu, C. Q. Wu, Y. D. Gong, and P. Shum, “Dual loop optical buffer based on a 3×3 collinear fiber coupler,” IEEE Photon. Technol. Lett. 16, 2129–2131, 2004.
[Crossref]

Guo, S.

Huang, S. Y.

Hwang, I. K.

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm,” IEEE Photon. Technol. Lett. 14, 501–503 (2002).
[Crossref]

H. S. Park, S. H. Yun, I. K. Hwang, S. B. Lee, and B. Y. Kim, “All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,” IEEE Photon. Technol. Lett. 13, 460–462 (2001).
[Crossref]

S. H. Yun, I. K. Hwang, and B. Y. Kim, “All-fiber tunable filter and laser based on two-mode fiber,” Opt. Lett. 21, 27–29 (1996).
[Crossref] [PubMed]

Ja, Y. H.

Y. H. Ja, “A Single-Mode Optical Fiber Ring Resonator using a Planar 3×3 Fiber Coupler and a Sagnac Loop,” J. Lightwave Technol. 12, 1348–13541994.
[Crossref]

Jian, S.

Jin, W.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
[Crossref]

Ju, J.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
[Crossref]

Kim, B. Y.

Lee, S. B.

H. S. Park, S. H. Yun, I. K. Hwang, S. B. Lee, and B. Y. Kim, “All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,” IEEE Photon. Technol. Lett. 13, 460–462 (2001).
[Crossref]

Liang, W.

Liping, S.

S. Liping and Y. peida, “general analysis of [3x3] optical fiber directional couplers,” Microwave Opt. Technol. Lett. 2, 52–541989.
[Crossref]

Liu, A.M.

A.M. Liu, C. Q. Wu, Y. D. Gong, and P. Shum, “Dual loop optical buffer based on a 3×3 collinear fiber coupler,” IEEE Photon. Technol. Lett. 16, 2129–2131, 2004.
[Crossref]

Lou, S.

Miller, M. S.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688–1696 (1990).
[Crossref]

Murphy, K. A.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688–1696 (1990).
[Crossref]

Nehring, J.

K. Bohnert, G. C. de Wit, and J. Nehring, ”Coherence-tuned interrogation of a remote elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–1031995.
[Crossref]

Park, H. S.

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[Crossref]

H. S. Park, S. H. Yun, I. K. Hwang, S. B. Lee, and B. Y. Kim, “All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,” IEEE Photon. Technol. Lett. 13, 460–462 (2001).
[Crossref]

peida, Y.

S. Liping and Y. peida, “general analysis of [3x3] optical fiber directional couplers,” Microwave Opt. Technol. Lett. 2, 52–541989.
[Crossref]

Pequignot, P.

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

C. D. Poole, J. M. Wiesenfeld, and D. J. Digiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photon. Technol. Lett. 5, 194–197 (1993).
[Crossref]

Ren, G.

Shaw, H. J.

Sheem, S. K.

S. K. Sheem, “Optical fiber interferometer with [3x3] directional couplers: analysis,” J. Appl. Phys. 52, 3865–38721981.
[Crossref]

Shum, P.

A.M. Liu, C. Q. Wu, Y. D. Gong, and P. Shum, “Dual loop optical buffer based on a 3×3 collinear fiber coupler,” IEEE Photon. Technol. Lett. 16, 2129–2131, 2004.
[Crossref]

Song, K. Y.

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm,” IEEE Photon. Technol. Lett. 14, 501–503 (2002).
[Crossref]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[Crossref]

Sorin, W. V.

Vengsarkar, A. M.

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688–1696 (1990).
[Crossref]

Wang, Z.

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

C. D. Poole, J. M. Wiesenfeld, and D. J. Digiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photon. Technol. Lett. 5, 194–197 (1993).
[Crossref]

Wu, C. Q.

A.M. Liu, C. Q. Wu, Y. D. Gong, and P. Shum, “Dual loop optical buffer based on a 3×3 collinear fiber coupler,” IEEE Photon. Technol. Lett. 16, 2129–2131, 2004.
[Crossref]

Yun, S. H.

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm,” IEEE Photon. Technol. Lett. 14, 501–503 (2002).
[Crossref]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[Crossref]

H. S. Park, S. H. Yun, I. K. Hwang, S. B. Lee, and B. Y. Kim, “All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,” IEEE Photon. Technol. Lett. 13, 460–462 (2001).
[Crossref]

S. H. Yun, I. K. Hwang, and B. Y. Kim, “All-fiber tunable filter and laser based on two-mode fiber,” Opt. Lett. 21, 27–29 (1996).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (5)

H. S. Park, S. H. Yun, I. K. Hwang, S. B. Lee, and B. Y. Kim, “All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,” IEEE Photon. Technol. Lett. 13, 460–462 (2001).
[Crossref]

C. D. Poole, J. M. Wiesenfeld, and D. J. Digiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photon. Technol. Lett. 5, 194–197 (1993).
[Crossref]

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm,” IEEE Photon. Technol. Lett. 14, 501–503 (2002).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 2472–2474 (2004).
[Crossref]

A.M. Liu, C. Q. Wu, Y. D. Gong, and P. Shum, “Dual loop optical buffer based on a 3×3 collinear fiber coupler,” IEEE Photon. Technol. Lett. 16, 2129–2131, 2004.
[Crossref]

J. Appl. Phys. (1)

S. K. Sheem, “Optical fiber interferometer with [3x3] directional couplers: analysis,” J. Appl. Phys. 52, 3865–38721981.
[Crossref]

J. Lightwave Technol. (6)

Y. H. Ja, “A Single-Mode Optical Fiber Ring Resonator using a Planar 3×3 Fiber Coupler and a Sagnac Loop,” J. Lightwave Technol. 12, 1348–13541994.
[Crossref]

K. Bohnert, G. C. de Wit, and J. Nehring, ”Coherence-tuned interrogation of a remote elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–1031995.
[Crossref]

K. Bohnert and P. Pequignot, “Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation,” J. Lightwave Technol. 16, 598–6041998.
[Crossref]

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688–1696 (1990).
[Crossref]

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[Crossref]

Microwave Opt. Technol. Lett. (1)

S. Liping and Y. peida, “general analysis of [3x3] optical fiber directional couplers,” Microwave Opt. Technol. Lett. 2, 52–541989.
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. A triple-core waveguide (left panel) and a collinear 3x3 fiber coupler (right panel).
Fig. 2.
Fig. 2. Mode indexes of 20 lower-order modes at 0.55μm, 1.0μm and 1.55μm
Fig. 3.
Fig. 3. x-polarized fundamental modes LP01x1, LP01x2 and LP01x3 at 0.55μm.
Fig. 4.
Fig. 4. The second-order x polarized modes at 0.55μm.
Fig. 5.
Fig. 5. The input (a) and output (b) of LP01x mode when incident on the central port 2.
Fig. 6.
Fig. 6. The input (a) and output (b) of LP01x mode when incident on port 1.
Fig.7.
Fig.7. The input (a) and output (b) of LP11ex mode when incident on the central port 2.
Fig. 8.
Fig. 8. The input (a) and output (b) of LP11ex mode when incident on port 1.
Fig. 9.
Fig. 9. the electrical field and the intensity pattern on the input side when both LP01x and LP11ex modes incident on port 2.
Fig. 10.
Fig. 10. the electrical field and the intensity pattern on the output side when both LP01x and LP11ex modes incident on port 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ 01 = 2 π z L B 01 = 2 k 01 π , Δ ϕ 11 = 2 π z L B 11 = ( 2 k 11 + 1 ) π , ( k 01 and k 11 are natural ) .
L B 01 L B 11 = 2 k 11 + 1 2 k 01 .
E R m n = 10 log P m n P m n + P m′n′ ,

Metrics