Abstract

UV-light-induced absorption in LiNbO3 highly doped with Mg and Hf was investigated. Distinct decay behavior was attributed to the different centers formed under UV illumination, i.e., the shallow and intermediate deep centers for trapping holes. O- formed near doped cation at the niobium site was suggested to be the origin of the shallow center, whereas that formed near cation vacancy was suggested to be the origin of the intermediate deep center. The influence of the sample status (oxidized or reduced) on the UV-light-induced absorption was demonstrated to support our suggestion. Two different dark decay processes were associated with relaxations of holes from the shallow centers to two unequivalent NbNb adjacent to the doped cations at niobium sites.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3

Yasuo Tomita, Steven Sunarno, and Guoquan Zhang
J. Opt. Soc. Am. B 21(4) 753-760 (2004)

Ultraviolet-light-induced absorption changes in highly Zn-doped LiNbO3

Haijun Qiao and Yasuo Tomita
Opt. Express 14(12) 5773-5778 (2006)

Investigations on the UV photorefractivity of LiNbO3:Hf

Wenbo Yan, Lihong Shi, Hongjian Chen, Xinzheng Zhang, and Yongfa Kong
Opt. Lett. 35(4) 601-603 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Räuber, Current Topics in Materials Science, V.1 (North-Holland, Amsterdam, 1978).
  2. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications, Vols. I and II (Springer-Verlag, Heidelberg, 1989).
  3. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [Crossref]
  4. Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
    [Crossref]
  5. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [Crossref] [PubMed]
  6. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
    [Crossref]
  7. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
    [Crossref]
  8. G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
    [Crossref]
  9. G. Zhang and Y. Tomita, “Ultraviolet-light-induced nearinfrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
    [Crossref]
  10. Y. Tomita, S. Sunarno, and G. Zhang, “Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3,” J. Opt. Soc. Am. B 21, 753–760 (2004).
    [Crossref]
  11. E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
    [Crossref]
  12. L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
    [Crossref]
  13. S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
    [Crossref]
  14. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
    [Crossref]
  15. Q. Xu, G. Zhang, H. Qiao, B. Fu, Y. Shen, and J. Xu, “Studies on thermal activation energy of ultraviolet-induced small polarons O- in damage-resistant lithium niobate crystals,” Trends Opt. Photon. 99, 121–126 (2005).
  16. A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate,” Appl. Opt. 41, 4891–4896 (2002).
    [Crossref] [PubMed]
  17. O. Schirmer, O. Thiemann, and M. WÖehlecke, “Defects in LiNbO3. I. experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
    [Crossref]
  18. B. Faust, H. Muller, and O. F. Schirmer, “Free small polarons in LiNbO3,” Ferroelectrics 153, 297–302 (1994).
    [Crossref]
  19. G. K. Kitaeva, K. A. Kuznetsov, A. N. Penin, and A. V. Shepelev, “Influence of small polarons on the optical properties of Mg:LiNbO3 crystals,” Phys. Rev. B 65, 054304 (2002).
    [Crossref]
  20. O. F. Schirmer and D. Von der Linde, “Two-photon- and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
    [Crossref]
  21. H. Qiao and Y. Tomita, “Ultraviolet-light-induced absorption changes in highly Zn-doped LiNbO3,” Opt. Express 14, 5773–5778 (2006).
    [Crossref] [PubMed]
  22. S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang are preparing a paper to be called “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping.” Appl. Phys. Lett. (to be published).
    [PubMed]

2006 (2)

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

H. Qiao and Y. Tomita, “Ultraviolet-light-induced absorption changes in highly Zn-doped LiNbO3,” Opt. Express 14, 5773–5778 (2006).
[Crossref] [PubMed]

2005 (2)

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

Q. Xu, G. Zhang, H. Qiao, B. Fu, Y. Shen, and J. Xu, “Studies on thermal activation energy of ultraviolet-induced small polarons O- in damage-resistant lithium niobate crystals,” Trends Opt. Photon. 99, 121–126 (2005).

2004 (2)

Y. Tomita, S. Sunarno, and G. Zhang, “Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3,” J. Opt. Soc. Am. B 21, 753–760 (2004).
[Crossref]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]

2003 (1)

G. Zhang and Y. Tomita, “Ultraviolet-light-induced nearinfrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
[Crossref]

2002 (3)

A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate,” Appl. Opt. 41, 4891–4896 (2002).
[Crossref] [PubMed]

G. K. Kitaeva, K. A. Kuznetsov, A. N. Penin, and A. V. Shepelev, “Influence of small polarons on the optical properties of Mg:LiNbO3 crystals,” Phys. Rev. B 65, 054304 (2002).
[Crossref]

G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
[Crossref]

2000 (1)

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[Crossref]

1998 (3)

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[Crossref]

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[Crossref]

1997 (1)

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[Crossref]

1995 (1)

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[Crossref]

1994 (1)

B. Faust, H. Muller, and O. F. Schirmer, “Free small polarons in LiNbO3,” Ferroelectrics 153, 297–302 (1994).
[Crossref]

1991 (1)

O. Schirmer, O. Thiemann, and M. WÖehlecke, “Defects in LiNbO3. I. experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[Crossref]

1978 (1)

O. F. Schirmer and D. Von der Linde, “Two-photon- and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
[Crossref]

Adibi, A.

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[Crossref]

Akella, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Bai, Y. S.

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[Crossref]

Buse, K.

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[Crossref]

Chen, S.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

Cristiani, I.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]

Degiorgio, V.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]

Deng, D.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

Faust, B.

B. Faust, H. Muller, and O. F. Schirmer, “Free small polarons in LiNbO3,” Ferroelectrics 153, 297–302 (1994).
[Crossref]

Fu, B.

Q. Xu, G. Zhang, H. Qiao, B. Fu, Y. Shen, and J. Xu, “Studies on thermal activation energy of ultraviolet-induced small polarons O- in damage-resistant lithium niobate crystals,” Trends Opt. Photon. 99, 121–126 (2005).

Furukawa, Y.

A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate,” Appl. Opt. 41, 4891–4896 (2002).
[Crossref] [PubMed]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[Crossref]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[Crossref]

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[Crossref]

Gao, G.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

Gao, H.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

Gruber, J. B.

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]

Guenther, H.

Günter, P.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications, Vols. I and II (Springer-Verlag, Heidelberg, 1989).

Hang, Z.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

Hatano, H.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[Crossref]

Hesselink, L.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Huignard, J. P.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications, Vols. I and II (Springer-Verlag, Heidelberg, 1989).

Iyi, N.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[Crossref]

Kachru, R.

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[Crossref]

Kimura, S.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[Crossref]

Kitaeva, G. K.

G. K. Kitaeva, K. A. Kuznetsov, A. N. Penin, and A. V. Shepelev, “Influence of small polarons on the optical properties of Mg:LiNbO3 crystals,” Phys. Rev. B 65, 054304 (2002).
[Crossref]

Kitamura, K.

A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate,” Appl. Opt. 41, 4891–4896 (2002).
[Crossref] [PubMed]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[Crossref]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[Crossref]

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[Crossref]

Kokanyan, E. P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]

Kong, Y.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang are preparing a paper to be called “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping.” Appl. Phys. Lett. (to be published).
[PubMed]

Kuznetsov, K. A.

G. K. Kitaeva, K. A. Kuznetsov, A. N. Penin, and A. V. Shepelev, “Influence of small polarons on the optical properties of Mg:LiNbO3 crystals,” Phys. Rev. B 65, 054304 (2002).
[Crossref]

Lande, D.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Lee, M.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[Crossref]

Li, S.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang are preparing a paper to be called “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping.” Appl. Phys. Lett. (to be published).
[PubMed]

Li, Y.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

Linde, D. Von der

O. F. Schirmer and D. Von der Linde, “Two-photon- and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
[Crossref]

Liu, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Liu, S.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang are preparing a paper to be called “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping.” Appl. Phys. Lett. (to be published).
[PubMed]

Macfarlane, R.

Macfarlane, R. M.

Minzioni, P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

Muller, H.

B. Faust, H. Muller, and O. F. Schirmer, “Free small polarons in LiNbO3,” Ferroelectrics 153, 297–302 (1994).
[Crossref]

Neurgaonkar, R.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[Crossref]

Orlov, S.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Penin, A. N.

G. K. Kitaeva, K. A. Kuznetsov, A. N. Penin, and A. V. Shepelev, “Influence of small polarons on the optical properties of Mg:LiNbO3 crystals,” Phys. Rev. B 65, 054304 (2002).
[Crossref]

Psaltis, D.

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[Crossref]

Qiao, H.

H. Qiao and Y. Tomita, “Ultraviolet-light-induced absorption changes in highly Zn-doped LiNbO3,” Opt. Express 14, 5773–5778 (2006).
[Crossref] [PubMed]

Q. Xu, G. Zhang, H. Qiao, B. Fu, Y. Shen, and J. Xu, “Studies on thermal activation energy of ultraviolet-induced small polarons O- in damage-resistant lithium niobate crystals,” Trends Opt. Photon. 99, 121–126 (2005).

Räuber, A.

A. Räuber, Current Topics in Materials Science, V.1 (North-Holland, Amsterdam, 1978).

Razzari, L.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]

Sato, M.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[Crossref]

Schirmer, O.

O. Schirmer, O. Thiemann, and M. WÖehlecke, “Defects in LiNbO3. I. experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[Crossref]

Schirmer, O. F.

B. Faust, H. Muller, and O. F. Schirmer, “Free small polarons in LiNbO3,” Ferroelectrics 153, 297–302 (1994).
[Crossref]

O. F. Schirmer and D. Von der Linde, “Two-photon- and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
[Crossref]

Shen, Y.

Q. Xu, G. Zhang, H. Qiao, B. Fu, Y. Shen, and J. Xu, “Studies on thermal activation energy of ultraviolet-induced small polarons O- in damage-resistant lithium niobate crystals,” Trends Opt. Photon. 99, 121–126 (2005).

Shepelev, A. V.

G. K. Kitaeva, K. A. Kuznetsov, A. N. Penin, and A. V. Shepelev, “Influence of small polarons on the optical properties of Mg:LiNbO3 crystals,” Phys. Rev. B 65, 054304 (2002).
[Crossref]

Sunarno, S.

Takekawa, S.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[Crossref]

Tanaka, S.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[Crossref]

Thiemann, O.

O. Schirmer, O. Thiemann, and M. WÖehlecke, “Defects in LiNbO3. I. experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[Crossref]

Tomita, Y.

H. Qiao and Y. Tomita, “Ultraviolet-light-induced absorption changes in highly Zn-doped LiNbO3,” Opt. Express 14, 5773–5778 (2006).
[Crossref] [PubMed]

Y. Tomita, S. Sunarno, and G. Zhang, “Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3,” J. Opt. Soc. Am. B 21, 753–760 (2004).
[Crossref]

G. Zhang and Y. Tomita, “Ultraviolet-light-induced nearinfrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
[Crossref]

G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
[Crossref]

Winnacker, A.

WÖehlecke, M.

O. Schirmer, O. Thiemann, and M. WÖehlecke, “Defects in LiNbO3. I. experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[Crossref]

Xu, J.

Q. Xu, G. Zhang, H. Qiao, B. Fu, Y. Shen, and J. Xu, “Studies on thermal activation energy of ultraviolet-induced small polarons O- in damage-resistant lithium niobate crystals,” Trends Opt. Photon. 99, 121–126 (2005).

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang are preparing a paper to be called “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping.” Appl. Phys. Lett. (to be published).
[PubMed]

Xu, Jingjun

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

Xu, Q.

Q. Xu, G. Zhang, H. Qiao, B. Fu, Y. Shen, and J. Xu, “Studies on thermal activation energy of ultraviolet-induced small polarons O- in damage-resistant lithium niobate crystals,” Trends Opt. Photon. 99, 121–126 (2005).

Yajima, Y.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[Crossref]

Zhang, G.

Q. Xu, G. Zhang, H. Qiao, B. Fu, Y. Shen, and J. Xu, “Studies on thermal activation energy of ultraviolet-induced small polarons O- in damage-resistant lithium niobate crystals,” Trends Opt. Photon. 99, 121–126 (2005).

Y. Tomita, S. Sunarno, and G. Zhang, “Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3,” J. Opt. Soc. Am. B 21, 753–760 (2004).
[Crossref]

G. Zhang and Y. Tomita, “Ultraviolet-light-induced nearinfrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
[Crossref]

G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
[Crossref]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang are preparing a paper to be called “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping.” Appl. Phys. Lett. (to be published).
[PubMed]

Zhang, L.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[Crossref]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84, 1880–1882 (2004).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

O. F. Schirmer and D. Von der Linde, “Two-photon- and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
[Crossref]

Ferroelectrics (1)

B. Faust, H. Muller, and O. F. Schirmer, “Free small polarons in LiNbO3,” Ferroelectrics 153, 297–302 (1994).
[Crossref]

J. Appl. Phys. (2)

G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
[Crossref]

G. Zhang and Y. Tomita, “Ultraviolet-light-induced nearinfrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

O. Schirmer, O. Thiemann, and M. WÖehlecke, “Defects in LiNbO3. I. experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[Crossref]

J. Phys.: Condens. Matter (1)

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and Jingjun Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys.: Condens. Matter 18, 3527–3534 (2006).
[Crossref]

J. Solid State Chem. (1)

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[Crossref]

Nature (1)

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

G. K. Kitaeva, K. A. Kuznetsov, A. N. Penin, and A. V. Shepelev, “Influence of small polarons on the optical properties of Mg:LiNbO3 crystals,” Phys. Rev. B 65, 054304 (2002).
[Crossref]

Phys. Rev. Lett. (1)

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[Crossref]

Science (1)

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Trends Opt. Photon. (1)

Q. Xu, G. Zhang, H. Qiao, B. Fu, Y. Shen, and J. Xu, “Studies on thermal activation energy of ultraviolet-induced small polarons O- in damage-resistant lithium niobate crystals,” Trends Opt. Photon. 99, 121–126 (2005).

Other (3)

A. Räuber, Current Topics in Materials Science, V.1 (North-Holland, Amsterdam, 1978).

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications, Vols. I and II (Springer-Verlag, Heidelberg, 1989).

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang are preparing a paper to be called “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping.” Appl. Phys. Lett. (to be published).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the experimental arrangement for the ULIA measurement. Details of uniform illumination of strong green light were omitted. UV light intensity was 500 mW/cm2, intensity of strong green light was 200 mW/cm2 , and that of the probe-light (denoted as “Pȁ) 1mW/cm2. Another reference light (denoted as “R”) was used to reduce the drifts caused by power fluctuation of the semiconductor laser.
Fig. 2.
Fig. 2. Typical ULIA curve for highly Mg-doped LN crystal. ON- and OFF-states of UV light are denoted as arrows in the figure.
Fig. 3.
Fig. 3. Dark decay and green-light-induced decay curves for ULIA. ON-state of strong uniform illumination with 532-nm green light is denoted as arrows, black curves correspond to the experimental data, and red curves are the fitting results of the dark decay curves with bi-exponential form given by Eq. (2).
Fig. 4.
Fig. 4. Experiment data for decayed and nondecayed parts of the ULIA in the dark.
Fig. 5.
Fig. 5. Structural schematics of lattice for highly Mg-doped LN. MgLi+ is located near MgNb3 for the balance of electric charge, but it doesn’t participate in the charge transfer process of ULIA.

Tables (2)

Tables Icon

Table 1. The labels and material parameters of the samples used in this study.

Tables Icon

Table 2. The fitting results of the dark decay curves in Fig. 3 using bi-exponential form given by Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ α ( t ) = Δ α 0 1 + 2 γΔ α 0 2 t
Δ α ( t ) = A 0 + A 1 exp ( t / τ 1 ) + A 2 exp ( t / τ 2 )

Metrics