Abstract

A new approach to birefringence compensation in arrayed waveguide gratings (AWG) is proposed. The star couplers are designed according to Rowland circle construction with an oblique incident/diffraction angle, similar to the case of an echelle grating. Such an AWG design is more general and flexible, and the conventional AWG becomes its special case when the grating angle is zero. By appropriately designing the star coupler shape, the birefringence of the arrayed waveguides can be compensated by that of the slab waveguides. The details of the design method and simulation results are presented.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Birefringence compensated silicon nanowire arrayed waveguide grating for CWDM optical interconnects

Jun Zou, Xiang Xia, Guanting Chen, Tingting Lang, and Jian-Jun He
Opt. Lett. 39(7) 1834-1837 (2014)

Performance improvement in silicon arrayed waveguide grating by suppression of scattering near the boundary of a star coupler

Jaegyu Park, Gyungock Kim, Hyundai Park, Jiho Joo, Sanggi Kim, and Myung-Joon Kwack
Appl. Opt. 54(17) 5597-5602 (2015)

Improved arrayed-waveguide-grating layout avoiding systematic phase errors

Nur Ismail, Fei Sun, Gabriel Sengo, Kerstin Wörhoff, Alfred Driessen, René M. de Ridder, and Markus Pollnau
Opt. Express 19(9) 8781-8794 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Takahashi, Y. Hibino, and I. Nishi, “Polarization-insensitive arrayed waveguide grating wavelength multiplexer on silicon,” Opt. Lett. 17, 499–501 (1992).
    [Crossref] [PubMed]
  2. J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
    [Crossref]
  3. J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
    [Crossref]
  4. N. Yurt, K. Rausch, A. Kost, and N. Peyghambarian, “Design and fabrication of a broadband polarization and temperature insensitive arrayed waveguide grating on InP,” Opt. Express 13, 5535–5541 (2005).
    [Crossref] [PubMed]
  5. Y. Yoshikuni, “Semiconductor arrayed waveguide gratings for photonic integrated devices,” IEEE J. Sel. Top. Quantum Electron. 8, 1102–1114 (2002).
    [Crossref]
  6. H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
    [Crossref]
  7. M. Zirngibl, C. H. Joyner, and P. C. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
    [Crossref]
  8. J.-J. He, B. Lamontagne, and E. S. Koteles, “Polarisation dispersion compensated AWG demultiplexer fabricated in a single shallow etching step,” Electron. Lett. 35, 737–738 (1999).
    [Crossref]
  9. S. M. Ojhaet al, “Simple method of fabricating polarization insensitive and very low crosstalk AWG grating devices,”Electron. Lett. 34, 78–79 (1998).
    [Crossref]
  10. Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “A novel birefriengence compensating AWG design,” OFC 2001, WB4-1 (2001).
  11. W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightwave Technol. 23, 1308–1318 (2005).
    [Crossref]
  12. J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999).
    [Crossref]
  13. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron 2, 236–250 (1996).
    [Crossref]
  14. K. Okamoto, Fundamentals of Optical Waveguides (New York. Academic Press), 30–38.

2005 (2)

2002 (2)

Y. Yoshikuni, “Semiconductor arrayed waveguide gratings for photonic integrated devices,” IEEE J. Sel. Top. Quantum Electron. 8, 1102–1114 (2002).
[Crossref]

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

1999 (2)

J.-J. He, B. Lamontagne, and E. S. Koteles, “Polarisation dispersion compensated AWG demultiplexer fabricated in a single shallow etching step,” Electron. Lett. 35, 737–738 (1999).
[Crossref]

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999).
[Crossref]

1998 (1)

S. M. Ojhaet al, “Simple method of fabricating polarization insensitive and very low crosstalk AWG grating devices,”Electron. Lett. 34, 78–79 (1998).
[Crossref]

1996 (2)

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron 2, 236–250 (1996).
[Crossref]

1995 (1)

M. Zirngibl, C. H. Joyner, and P. C. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[Crossref]

1993 (1)

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[Crossref]

1992 (1)

Adesida, I.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Amersfoort, M. R.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Andreadakis, N. C.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Besten, J. H. den

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Bhat, R.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Caneau, C.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Cheben, P.

Chou, P. C.

M. Zirngibl, C. H. Joyner, and P. C. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[Crossref]

Dam, C. Van

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron 2, 236–250 (1996).
[Crossref]

Davies, M.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999).
[Crossref]

Delage, A.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999).
[Crossref]

Dessens, M. P.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Erickson, L.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999).
[Crossref]

Groen, F. H.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Hashizume, Y.

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “A novel birefriengence compensating AWG design,” OFC 2001, WB4-1 (2001).

He, J.-J.

J.-J. He, B. Lamontagne, and E. S. Koteles, “Polarisation dispersion compensated AWG demultiplexer fabricated in a single shallow etching step,” Electron. Lett. 35, 737–738 (1999).
[Crossref]

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999).
[Crossref]

Herben, C. G. P.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Hibino, Y.

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[Crossref]

H. Takahashi, Y. Hibino, and I. Nishi, “Polarization-insensitive arrayed waveguide grating wavelength multiplexer on silicon,” Opt. Lett. 17, 499–501 (1992).
[Crossref] [PubMed]

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “A novel birefriengence compensating AWG design,” OFC 2001, WB4-1 (2001).

Himeno, A.

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “A novel birefriengence compensating AWG design,” OFC 2001, WB4-1 (2001).

Inoue, Y.

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “A novel birefriengence compensating AWG design,” OFC 2001, WB4-1 (2001).

Itoh, M.

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “A novel birefriengence compensating AWG design,” OFC 2001, WB4-1 (2001).

Janz, S.

Joyner, C. H.

M. Zirngibl, C. H. Joyner, and P. C. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[Crossref]

Kawachi, M.

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[Crossref]

Kost, A.

Koteles, E. S.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999).
[Crossref]

J.-J. He, B. Lamontagne, and E. S. Koteles, “Polarisation dispersion compensated AWG demultiplexer fabricated in a single shallow etching step,” Electron. Lett. 35, 737–738 (1999).
[Crossref]

Koza, M. A.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Lamontagne, B.

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightwave Technol. 23, 1308–1318 (2005).
[Crossref]

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999).
[Crossref]

J.-J. He, B. Lamontagne, and E. S. Koteles, “Polarisation dispersion compensated AWG demultiplexer fabricated in a single shallow etching step,” Electron. Lett. 35, 737–738 (1999).
[Crossref]

Leblanc, H. P.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Leijtens, X. J. M.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Leys, M. R.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

Nishi, I.

Ohmori, Y.

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[Crossref]

Ojha, S. M.

S. M. Ojhaet al, “Simple method of fabricating polarization insensitive and very low crosstalk AWG grating devices,”Electron. Lett. 34, 78–79 (1998).
[Crossref]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (New York. Academic Press), 30–38.

Peyghambarian, N.

Picard, M.-J.

Rajhel, A.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Rausch, K.

Smit, M. K.

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron 2, 236–250 (1996).
[Crossref]

Soole, J. B. D.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Sugita, A.

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “A novel birefriengence compensating AWG design,” OFC 2001, WB4-1 (2001).

Takahashi, H.

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[Crossref]

H. Takahashi, Y. Hibino, and I. Nishi, “Polarization-insensitive arrayed waveguide grating wavelength multiplexer on silicon,” Opt. Lett. 17, 499–501 (1992).
[Crossref] [PubMed]

Tarr, N. G.

Xu, D.-X.

Ye, W. N.

Yoshikuni, Y.

Y. Yoshikuni, “Semiconductor arrayed waveguide gratings for photonic integrated devices,” IEEE J. Sel. Top. Quantum Electron. 8, 1102–1114 (2002).
[Crossref]

Youtsey, C.

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

Yurt, N.

Zirngibl, M.

M. Zirngibl, C. H. Joyner, and P. C. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[Crossref]

Electron. Lett. (4)

J. B. D. Soole, M. R. Amersfoort, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, M. A. Koza, R. Bhat, C. Youtsey, and I. Adesida, “Polarization-independent InP arrayed waveguide filter using square cross-section waveguides,” Electron. Lett. 32, 323–324 (1996).
[Crossref]

M. Zirngibl, C. H. Joyner, and P. C. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[Crossref]

J.-J. He, B. Lamontagne, and E. S. Koteles, “Polarisation dispersion compensated AWG demultiplexer fabricated in a single shallow etching step,” Electron. Lett. 35, 737–738 (1999).
[Crossref]

S. M. Ojhaet al, “Simple method of fabricating polarization insensitive and very low crosstalk AWG grating devices,”Electron. Lett. 34, 78–79 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron 2, 236–250 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Yoshikuni, “Semiconductor arrayed waveguide gratings for photonic integrated devices,” IEEE J. Sel. Top. Quantum Electron. 8, 1102–1114 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (3)

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[Crossref]

J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, and M. K. Smit, “Low-Loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process,” IEEE Photon. Technol. Lett. 14, 62–64 (2002).
[Crossref]

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies, “Integrated polarization compensator for WDM waveguide demultiplexers,” IEEE Photon. Technol. Lett. 11, 224–226 (1999).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (1)

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (New York. Academic Press), 30–38.

Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, “A novel birefriengence compensating AWG design,” OFC 2001, WB4-1 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Birefringence versus the thermal expansion coefficient of the upper cladding for a buried channel waveguide and a slab waveguide.
Fig. 2.
Fig. 2. Schematic of birefringence compensated AWGs with the same (a) and opposite (b) signs between the channel waveguide and the slab waveguide.
Fig. 3.
Fig. 3. Schematic diagram of the input star coupler.
Fig. 4.
Fig. 4. Spectral response of the central output waveguide for AWGs with conventional (a) and angled (b) star couplers.
Fig. 5.
Fig. 5. PDλ, versus output waveguide number.

Tables (1)

Tables Icon

Table 1. Parameters of the birefringencecompensated AWG

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n a Δ L = c
2 n s Δ L s + n a Δ L = m λ c
2 Δ n s Δ L s + Δ n a Δ L = 0
( x pi x c ) 2 + ( y pi y c ) 2 = ( L f / cos θ ) 2
x pi 2 + y pi 2 = ( L f L s ) 2
( x p 1 x p 0 ) 2 + ( y p 1 y p 0 ) 2 = d a 2
tan θ = Δ L s ( Δ L s 2 L f ) 2 L f ( x p 1 sin α y p 1 cos α )
n s d a sin θ + n s d a sin β j + n a Δ L = m λ j
x qj = x p 0 L f cos β j cos ( α β j + θ ) / cos θ
y qj = y p 0 L f cos β j sin ( α β j + θ ) / cos θ

Metrics