Abstract

Ultrafast diffraction results in spatiotemporal un-coupling of the wave field, inducing spectral anomalies and pulse stretching. Localized compensation may be achieved via angular dispersion driven by diffractive optical elements (DOEs). We report on an DOEs-based beam shaper of ultrashort optical pulses with high spatiotemporal resolution. Inspection of the validity of our approach is performed in the single-cycle regime.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast diffraction of tightly focused waves with spatiotemporal stabilization

Carlos J. Zapata-Rodríguez
J. Opt. Soc. Am. B 25(9) 1449-1457 (2008)

Dynamic three-dimensional multifocal spots in high numerical-aperture objectives

Linwei Zhu, Rui Yang, Dawei Zhang, Junjie Yu, and Jiannong Chen
Opt. Express 25(20) 24756-24766 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  2. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, “Multi-photon multifocal microscopy exploiting a diffractive optical element,” Opt. Lett. 28, 1918–1920 (2003).
    [Crossref] [PubMed]
  3. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30, 1479–1481 (2005).
    [Crossref] [PubMed]
  4. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
    [Crossref] [PubMed]
  5. B. K. A. Ngoi, K. Venkatakrishnan, B. Tan, P. Stanley, and L. E. N. Lim, “Angular dispersion compensation for acousto-optic devices used for ultrashort-pulsed laser micromachining,” Opt. Express 9, 200–206 (2001).
    [Crossref] [PubMed]
  6. G. Li, C. Zhou, and E. Dai, “Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings,” J. Opt. Soc. Am. A 22, 767–772 (2005).
    [Crossref]
  7. S. Q. Zeng, X. Lv, C. Zhan, W. R. Chen, W. H. Xiong, Q. Luo, and S. L. Jacques, “Simultaneous compensation of spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31, 1091–1093 (2006).
    [Crossref] [PubMed]
  8. G. Mínguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andres, “High spatiotemporal resolution in multifocal processing with femtosecond laser pulses,” Opt. Lett. 31, 2631–2633 (2006).
    [Crossref] [PubMed]
  9. C. J. Zapata-Rodríguez and M. T. Caballero, “Isotropic compensation of diffraction-driven angular dispersion,” Opt. Lett. 32, 2472–2474 (2007).
    [Crossref] [PubMed]
  10. C. J. R. Sheppard and M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40, 1631–1651 (1993).
    [Crossref]
  11. C. J. Zapata-Rodríguez, “Debye representation of dispersive focused waves,” J. Opt. Soc. Am. A 24, 675–686 (2007).
    [Crossref]
  12. C. J. Zapata-Rodríguez, P. Andres, G. Mínguez-Vega, J. Lancis, and J. A. Monsoriu, “Broadband focused waves with compensated spatial dispersion: transverse versus axial balance,” Opt. Lett. 32, 853–855 (2007).
    [Crossref] [PubMed]

2007 (3)

2006 (2)

2005 (2)

2003 (2)

2001 (2)

1993 (1)

C. J. R. Sheppard and M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40, 1631–1651 (1993).
[Crossref]

Andres, P.

Antolini, R.

Audouard, E.

Caballero, M. T.

Caraquitena, J.

Chen, W. R.

Choudhury, A.

Dai, E.

Froner, E.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Gu, M.

C. J. R. Sheppard and M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40, 1631–1651 (1993).
[Crossref]

Huignard, J.-P.

Huot, N.

Jacques, S. L.

Kawata, S.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

Lancis, J.

Larat, C.

Li, G.

Lim, L. E. N.

Loiseaux, B.

Luo, Q.

Lv, X.

Mínguez-Vega, G.

Monsoriu, J. A.

Ngoi, B. K. A.

Pavone, F. S.

Sacconi, L.

Sanner, N.

Sheppard, C. J. R.

C. J. R. Sheppard and M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40, 1631–1651 (1993).
[Crossref]

Stanley, P.

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

Taghizadeh, M. R.

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

Tan, B.

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

Torres-Company, V.

Venkatakrishnan, K.

Xiong, W. H.

Zapata-Rodríguez, C. J.

Zeng, S. Q.

Zhan, C.

Zhou, C.

J. Mod. Opt. (1)

C. J. R. Sheppard and M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40, 1631–1651 (1993).
[Crossref]

J. Opt. Soc. Am. A (2)

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic focusing arrangement of a wave field diffracted by a Dammann grating. (b) Monochromatic response with λ0 = 600 nm.
Fig. 2.
Fig. 2. Polychromatic response of the system plotted in Fig. 1(a): Normalized power spectrum of (a) the incident wave and (b) off-axis foci of order (n,m). (c) Integrated intensity in the focal plane, and (d) field dynamics along the y-axis.
Fig. 3.
Fig. 3. (a) Diffractive image former of stationary diffraction-induced angular dispersion. (b) Angular dispersion for low orders of an 1D diffraction grating without (thin solid line) and with compensation (bold solid line) for λ0 = 600 nm (0.5 magnification omitted). (c) Hybrid diffractive-refractive achromatic beam shaper.
Fig. 4.
Fig. 4. Achromatic response of the system depicted in Fig. 3(c): (a) Normalized power spectrum and temporal evolution of the field (inset) for foci of order (n,m). (b) Integrated intensity in the focal plane, and (c) field dynamics along the y-axis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ( r 0 ) = F ( q ) exp ( i qr 0 ) d q .
h ( r ) = ik 0 α J 0 ( kr sin ϕ ) cos 1 2 ϕ sin ϕd ϕ ,
Δ r = r 0 σ ,
θ ʹ ( ω ) = θ 0 ʹ ω 0 ( 2 ω ω 0 ) ω 2 ,

Metrics