Abstract

We demonstrate widely tunable wavelength conversion based on four-wave mixing using a dispersion-shifted bismuth-oxide photonic crystal fiber (Bi-PCF). A 1-meter-long Bi-PCF is used as the nonlinear medium for wavelength conversion of a 10 Gb/s non-return-to-zero (NRZ) signal. A 3-dB working range of the converted signal over 35 nm is obtained with around 1-dB power penalty in the bit-error-rate measurements.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extinction ratio improvement by pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber

K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev
Opt. Express 13(22) 8900-8905 (2005)

References

  • View by:
  • |
  • |
  • |

  1. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Proc. OFC 2004, Postdeadline paper PDP26, LA, USA (2004).
  2. J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
    [Crossref] [PubMed]
  3. J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, #x201C;Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression,” J. Lightwave Technol. 23, 3591–3596 (2005).
    [Crossref]
  4. M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
    [Crossref]
  5. L. Fu, M. Rochette, V. Ta′eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
    [Crossref] [PubMed]
  6. K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
    [Crossref]
  7. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
    [Crossref]
  8. O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
    [Crossref]
  9. M. Tang, Y. Gong, and P. Shum, “Broad-band tunable wavelength conversion using Raman-assisted parametric four-wave mixing in highly nonlinear fibers with double-pass geometry,” IEEE Photon. Technol. Lett. 17, 148–150 (2005).
    [Crossref]
  10. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
    [Crossref]
  11. K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal Fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
    [Crossref]
  12. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17, 1474–1476 (2005).
    [Crossref]
  13. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
    [Crossref]
  14. H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K, Frampton, R. C. Moore, D. J. Richardson, and T. M. Monro, “Highly nonlinear bismuth-oxide-based glass holey fiber,” in Proc. OFC 2004, paper ThA4, LA, USA (2004).
  15. T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Dispersion shifted Bi2O3-based photonic crystal fiber,” in Proc. ECOC 2006, paper We1.3.2, Cannes, France (2006).
  16. T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Fusion-spliceable Bi2O3-based photonic crystal fiber,” in Proc. OFC 2007, paper OTuC5, Anaheim, USA (2007).
  17. K. Kikuchi and C. Lorattanasane, “Design of highly efficient four-wave mixing devices using optical fibers,” IEEE Photon. Technol. Lett. 6, 992–994 (1994).
    [Crossref]

2005 (6)

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref] [PubMed]

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, #x201C;Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression,” J. Lightwave Technol. 23, 3591–3596 (2005).
[Crossref]

L. Fu, M. Rochette, V. Ta′eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
[Crossref] [PubMed]

M. Tang, Y. Gong, and P. Shum, “Broad-band tunable wavelength conversion using Raman-assisted parametric four-wave mixing in highly nonlinear fibers with double-pass geometry,” IEEE Photon. Technol. Lett. 17, 148–150 (2005).
[Crossref]

K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal Fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]

2003 (1)

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

2002 (1)

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

2000 (1)

O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[Crossref]

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[Crossref]

1994 (1)

K. Kikuchi and C. Lorattanasane, “Design of highly efficient four-wave mixing devices using optical fibers,” IEEE Photon. Technol. Lett. 6, 992–994 (1994).
[Crossref]

1992 (2)

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

Aso, O.

O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[Crossref]

Asobe, M.

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

Belardi, W.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Bjarklev, A.

K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal Fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

Chow, K. K.

K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal Fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K, Frampton, R. C. Moore, D. J. Richardson, and T. M. Monro, “Highly nonlinear bismuth-oxide-based glass holey fiber,” in Proc. OFC 2004, paper ThA4, LA, USA (2004).

Eggleton, B.

Finazzi, V.

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K, Frampton, R. C. Moore, D. J. Richardson, and T. M. Monro, “Highly nonlinear bismuth-oxide-based glass holey fiber,” in Proc. OFC 2004, paper ThA4, LA, USA (2004).

Frampton, K,

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K, Frampton, R. C. Moore, D. J. Richardson, and T. M. Monro, “Highly nonlinear bismuth-oxide-based glass holey fiber,” in Proc. OFC 2004, paper ThA4, LA, USA (2004).

Frampton, K.

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Fu, L.

Furusawa, K.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Gong, Y.

M. Tang, Y. Gong, and P. Shum, “Broad-band tunable wavelength conversion using Raman-assisted parametric four-wave mixing in highly nonlinear fibers with double-pass geometry,” IEEE Photon. Technol. Lett. 17, 148–150 (2005).
[Crossref]

Gopinath, J. T.

Hasegawa, T.

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, #x201C;Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression,” J. Lightwave Technol. 23, 3591–3596 (2005).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref] [PubMed]

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Proc. OFC 2004, Postdeadline paper PDP26, LA, USA (2004).

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Dispersion shifted Bi2O3-based photonic crystal fiber,” in Proc. ECOC 2006, paper We1.3.2, Cannes, France (2006).

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Fusion-spliceable Bi2O3-based photonic crystal fiber,” in Proc. OFC 2007, paper OTuC5, Anaheim, USA (2007).

Hewak, D. W.

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

Ippen, E. P.

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

Kiang, K. M.

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref] [PubMed]

K. Kikuchi and C. Lorattanasane, “Design of highly efficient four-wave mixing devices using optical fibers,” IEEE Photon. Technol. Lett. 6, 992–994 (1994).
[Crossref]

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Proc. OFC 2004, Postdeadline paper PDP26, LA, USA (2004).

Kubodera, K.

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

Lee, J. H.

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref] [PubMed]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Lin, Chinlon

K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal Fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

Lorattanasane, C.

K. Kikuchi and C. Lorattanasane, “Design of highly efficient four-wave mixing devices using optical fibers,” IEEE Photon. Technol. Lett. 6, 992–994 (1994).
[Crossref]

Monro, T. M.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K, Frampton, R. C. Moore, D. J. Richardson, and T. M. Monro, “Highly nonlinear bismuth-oxide-based glass holey fiber,” in Proc. OFC 2004, paper ThA4, LA, USA (2004).

Moore,

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Moore, R. C.

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K, Frampton, R. C. Moore, D. J. Richardson, and T. M. Monro, “Highly nonlinear bismuth-oxide-based glass holey fiber,” in Proc. OFC 2004, paper ThA4, LA, USA (2004).

Moss, D.

Nagashima, T.

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref] [PubMed]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, #x201C;Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression,” J. Lightwave Technol. 23, 3591–3596 (2005).
[Crossref]

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Fusion-spliceable Bi2O3-based photonic crystal fiber,” in Proc. OFC 2007, paper OTuC5, Anaheim, USA (2007).

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Proc. OFC 2004, Postdeadline paper PDP26, LA, USA (2004).

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Dispersion shifted Bi2O3-based photonic crystal fiber,” in Proc. ECOC 2006, paper We1.3.2, Cannes, France (2006).

Namiki, S.

O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[Crossref]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref] [PubMed]

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Proc. OFC 2004, Postdeadline paper PDP26, LA, USA (2004).

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Dispersion shifted Bi2O3-based photonic crystal fiber,” in Proc. ECOC 2006, paper We1.3.2, Cannes, France (2006).

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Fusion-spliceable Bi2O3-based photonic crystal fiber,” in Proc. OFC 2007, paper OTuC5, Anaheim, USA (2007).

Petropoulos, P.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K, Frampton, R. C. Moore, D. J. Richardson, and T. M. Monro, “Highly nonlinear bismuth-oxide-based glass holey fiber,” in Proc. OFC 2004, paper ThA4, LA, USA (2004).

Richardson, D. J.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K, Frampton, R. C. Moore, D. J. Richardson, and T. M. Monro, “Highly nonlinear bismuth-oxide-based glass holey fiber,” in Proc. OFC 2004, paper ThA4, LA, USA (2004).

Rochette, M.

Rutt, H. N.

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Shen, H. M.

Shin-Ichi, A.

O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[Crossref]

Shu, C.

K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal Fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

Shum, P.

M. Tang, Y. Gong, and P. Shum, “Broad-band tunable wavelength conversion using Raman-assisted parametric four-wave mixing in highly nonlinear fibers with double-pass geometry,” IEEE Photon. Technol. Lett. 17, 148–150 (2005).
[Crossref]

Sotobayashi, H.

Sugimoto, N.

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, #x201C;Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression,” J. Lightwave Technol. 23, 3591–3596 (2005).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref] [PubMed]

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Fusion-spliceable Bi2O3-based photonic crystal fiber,” in Proc. OFC 2007, paper OTuC5, Anaheim, USA (2007).

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Proc. OFC 2004, Postdeadline paper PDP26, LA, USA (2004).

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Dispersion shifted Bi2O3-based photonic crystal fiber,” in Proc. ECOC 2006, paper We1.3.2, Cannes, France (2006).

Suzuki, Y.

O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[Crossref]

Tadakuma, M.

O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[Crossref]

Ta'eed, V.

Taira, K.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Proc. OFC 2004, Postdeadline paper PDP26, LA, USA (2004).

Tanemura, T.

Tang, M.

M. Tang, Y. Gong, and P. Shum, “Broad-band tunable wavelength conversion using Raman-assisted parametric four-wave mixing in highly nonlinear fibers with double-pass geometry,” IEEE Photon. Technol. Lett. 17, 148–150 (2005).
[Crossref]

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

Tucknott, J.

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Yagi, T.

O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[Crossref]

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[Crossref]

Yusoff, Z.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Electron. Lett. (2)

O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing generation in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[Crossref]

K. M. Kiang, K. Frampton, T. M. Monro, Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single-mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (7)

K. Kikuchi and C. Lorattanasane, “Design of highly efficient four-wave mixing devices using optical fibers,” IEEE Photon. Technol. Lett. 6, 992–994 (1994).
[Crossref]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[Crossref]

M. Tang, Y. Gong, and P. Shum, “Broad-band tunable wavelength conversion using Raman-assisted parametric four-wave mixing in highly nonlinear fibers with double-pass geometry,” IEEE Photon. Technol. Lett. 17, 148–150 (2005).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal Fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17, 1474–1476 (2005).
[Crossref]

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (1)

Other (4)

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Proc. OFC 2004, Postdeadline paper PDP26, LA, USA (2004).

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K, Frampton, R. C. Moore, D. J. Richardson, and T. M. Monro, “Highly nonlinear bismuth-oxide-based glass holey fiber,” in Proc. OFC 2004, paper ThA4, LA, USA (2004).

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Dispersion shifted Bi2O3-based photonic crystal fiber,” in Proc. ECOC 2006, paper We1.3.2, Cannes, France (2006).

T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Fusion-spliceable Bi2O3-based photonic crystal fiber,” in Proc. OFC 2007, paper OTuC5, Anaheim, USA (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup on widely tunable wavelength conversion using a dispersion-shifted bismuth-oxide photonic crystal fiber. The inset shows the mircrostructured region of the fiber [12]. Bi-PCF: bismuth-oxide photonic crystal fiber; EDFA: erbium-doped fiber amplifier; FFP: tunable fiber Fabry-Perot filter; BERT: bit-error rate test set.
Fig. 2.
Fig. 2. Output four-wave mixing spectra after Bi-PCF showing (a)(b) up conversion and (c)(d) down conversion. S: input signal; P: pump; and C: converted signal.
Fig. 3.
Fig. 3. Plot of conversion efficiency against converted signal wavelength.
Fig. 4.
Fig. 4. Plot of bit-error rate against received optical power. Inset (upper) and (lower) show the 10 Gb/s eye-diagrams of input and 15 nm down-converted signal, respectively.

Tables (1)

Tables Icon

Table 1. Optical parameters of Bi-PCF, Bi-NLF, and common silica HNLF

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η ( L ) = ( γ P av L ) 2
P av = P [ 1 exp ( αL ) ] αL
η ( L ) = [ γ P av L sin ( Δ kL 2 ) Δ kL 2 ] 2

Metrics