J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[Crossref]
T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, “Luminescence Properties of Rhodamines in Water-Ethanol Mixtures,” J. Lumin. 48-9, 400–404 (1991).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]
[PubMed]
T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, “Luminescence Properties of Rhodamines in Water-Ethanol Mixtures,” J. Lumin. 48-9, 400–404 (1991).
[Crossref]
T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, “Luminescence Properties of Rhodamines in Water-Ethanol Mixtures,” J. Lumin. 48-9, 400–404 (1991).
[Crossref]
T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, “Luminescence Properties of Rhodamines in Water-Ethanol Mixtures,” J. Lumin. 48-9, 400–404 (1991).
[Crossref]
A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]
[PubMed]
A. Ashkin, “Applications of Laser-Radiation Pressure,” Science 210, 1081–1088 (1980).
[Crossref]
[PubMed]
A. Ashkin and J. P. Gordon, “Cooling and Trapping of Atoms by Resonance Radiation Pressure,” Opt. Lett. 4, 161–163 (1979).
[Crossref]
[PubMed]
A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]
R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78, 2272–2278 (2006).
[Crossref]
[PubMed]
W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[Crossref]
[PubMed]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
K. Svoboda and S. M. Block, “Biological Applications of Optical Forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]
[PubMed]
K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct Observation of Kinesin Stepping by Optical Trapping Interferometry,” Nature 365, 721–727 (1993).
[Crossref]
[PubMed]
E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Buckling of actin-coated membranes under application of a local force,” Phys. Rev. Lett. 87, 088103 (2001).
[Crossref]
[PubMed]
S. Duhr and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96, 168301 (2006).
[Crossref]
[PubMed]
D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002).
[Crossref]
[PubMed]
E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Buckling of actin-coated membranes under application of a local force,” Phys. Rev. Lett. 87, 088103 (2001).
[Crossref]
[PubMed]
H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442, 387–393 (2006).
[Crossref]
[PubMed]
S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monollithic optical manipulation,” Lab Chip 6, 1122–1124 (2006).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]
[PubMed]
R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78, 2272–2278 (2006).
[Crossref]
[PubMed]
S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monollithic optical manipulation,” Lab Chip 6, 1122–1124 (2006).
[Crossref]
[PubMed]
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
[Crossref]
[PubMed]
W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[Crossref]
[PubMed]
R. Dimova, B. Pouligny, and C. Dietrich, “Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study,” Biophys. J. 79, 340–356 (2000).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
R. Dimova, B. Pouligny, and C. Dietrich, “Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study,” Biophys. J. 79, 340–356 (2000).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nature Rev. Drug Discovery 5, 210–218 (2006).
[Crossref]
S. Duhr and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96, 168301 (2006).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “ High throughput rheological measurements with an optical stretcher,” in Cell Mechanics (Methods in Cell Biology83), Y. L. Wang and D. E. Discher eds. (Elsevier, New York, 2007).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, “Luminescence Properties of Rhodamines in Water-Ethanol Mixtures,” J. Lumin. 48-9, 400–404 (1991).
[Crossref]
C. A. J. Fletcher, Computational Techniques for Fluid Dynamics 1 (Springer Verlag, 1991).
[Crossref]
R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78, 2272–2278 (2006).
[Crossref]
[PubMed]
W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[Crossref]
[PubMed]
D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73, 4117–4123 (2001).
[Crossref]
[PubMed]
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref]
[PubMed]
J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, “Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders,” Biophys. J. 76, A234–A234 (1999).
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]
[PubMed]
B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “ High throughput rheological measurements with an optical stretcher,” in Cell Mechanics (Methods in Cell Biology83), Y. L. Wang and D. E. Discher eds. (Elsevier, New York, 2007).
[Crossref]
W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[Crossref]
[PubMed]
E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Buckling of actin-coated membranes under application of a local force,” Phys. Rev. Lett. 87, 088103 (2001).
[Crossref]
[PubMed]
E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Buckling of actin-coated membranes under application of a local force,” Phys. Rev. Lett. 87, 088103 (2001).
[Crossref]
[PubMed]
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
[Crossref]
[PubMed]
R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78, 2272–2278 (2006).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]
[PubMed]
R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78, 2272–2278 (2006).
[Crossref]
[PubMed]
S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monollithic optical manipulation,” Lab Chip 6, 1122–1124 (2006).
[Crossref]
[PubMed]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “ High throughput rheological measurements with an optical stretcher,” in Cell Mechanics (Methods in Cell Biology83), Y. L. Wang and D. E. Discher eds. (Elsevier, New York, 2007).
[Crossref]
D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73, 4117–4123 (2001).
[Crossref]
[PubMed]
E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Buckling of actin-coated membranes under application of a local force,” Phys. Rev. Lett. 87, 088103 (2001).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]
[PubMed]
P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nature Rev. Drug Discovery 5, 210–218 (2006).
[Crossref]
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
[Crossref]
[PubMed]
A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]
[PubMed]
R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78, 2272–2278 (2006).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, “Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders,” Biophys. J. 76, A234–A234 (1999).
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
[Crossref]
[PubMed]
E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref]
[PubMed]
R. Dimova, B. Pouligny, and C. Dietrich, “Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study,” Biophys. J. 79, 340–356 (2000).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78, 2272–2278 (2006).
[Crossref]
[PubMed]
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
[Crossref]
[PubMed]
A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[Crossref]
[PubMed]
W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[Crossref]
[PubMed]
E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Buckling of actin-coated membranes under application of a local force,” Phys. Rev. Lett. 87, 088103 (2001).
[Crossref]
[PubMed]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73, 4117–4123 (2001).
[Crossref]
[PubMed]
J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[Crossref]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
A. N. Tkhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover, 1990).
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “ High throughput rheological measurements with an optical stretcher,” in Cell Mechanics (Methods in Cell Biology83), Y. L. Wang and D. E. Discher eds. (Elsevier, New York, 2007).
[Crossref]
E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref]
[PubMed]
K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct Observation of Kinesin Stepping by Optical Trapping Interferometry,” Nature 365, 721–727 (1993).
[Crossref]
[PubMed]
K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct Observation of Kinesin Stepping by Optical Trapping Interferometry,” Nature 365, 721–727 (1993).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
[Crossref]
[PubMed]
J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, “Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders,” Biophys. J. 76, A234–A234 (1999).
A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[Crossref]
[PubMed]
W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[Crossref]
[PubMed]
J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, “Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders,” Biophys. J. 76, A234–A234 (1999).
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
[Crossref]
[PubMed]
A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[Crossref]
[PubMed]
K. Svoboda and S. M. Block, “Biological Applications of Optical Forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]
[PubMed]
K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct Observation of Kinesin Stepping by Optical Trapping Interferometry,” Nature 365, 721–727 (1993).
[Crossref]
[PubMed]
A. N. Tkhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover, 1990).
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, “Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders,” Biophys. J. 76, A234–A234 (1999).
J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, “Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders,” Biophys. J. 76, A234–A234 (1999).
F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid. Nanofluid. 2, 21–36 (2006).
[Crossref]
J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref]
[PubMed]
B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “ High throughput rheological measurements with an optical stretcher,” in Cell Mechanics (Methods in Cell Biology83), Y. L. Wang and D. E. Discher eds. (Elsevier, New York, 2007).
[Crossref]
M. T. Wei, K. T. Yang, A. Karmenyan, and A. Chiou, “Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap,” Opt. Express 14, 3056–3064 (2006).
[Crossref]
[PubMed]
K. T. Yang, “Natural Convection in Enclosures”, in Handbook of Single Phase Convective Heat Transfer, S. Kakac, R. K. Shah, and W. Aung, eds. (Wiley-Interscience, 1987),