## Abstract

The advantages of optics that include processing speed and information throughput, modularity and versatility could be incorporated into one of the most interesting and applicable topics of digital communication related to Viterbi decoders. We aim to accelerate the processing rate and capabilities of Viterbi decoders applied for convolution codes, speech recognition, inter symbol interference (ISI) mitigation problems. The suggested configuration for realizing the decoder is based upon fast optical switches. The configuration is very modular and can easily be increased to Viterbi decoder based upon state machine with larger number of states and depth of the trellis diagram.

©2007 Optical Society of America

Full Article |

PDF Article

**OSA Recommended Articles**
### Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

### Equations (8)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${P}_{r}\{{s}_{0},\dots ,{s}_{T}\}={p}_{0}\prod _{t=1}^{T}{P}_{r}\left\{{s}_{t}\mid {s}_{t-1}\right\}$$
(2)
$${P}_{r}\left\{{s}_{0},\dots ,{s}_{T}\mid {o}_{0}={z}_{0},\dots ,{o}_{T}={z}_{T}\right\}=\frac{{P}_{r}\left\{{o}_{0}={z}_{0},\dots ,{o}_{T}={z}_{T}\mid {s}_{0},\dots ,{s}_{T}\right\}{P}_{r}\{{s}_{0},\dots ,{s}_{T}\}}{{P}_{r}\left\{{o}_{0}={z}_{o},\dots ,{o}_{T}={z}_{T}\right\}}$$
(3)
$${P}_{r}\left\{{o}_{0}={z}_{0},\dots ,{o}_{T}={z}_{T}\mid {M}_{k}\right\}$$
(4)
$${P}_{r}\left\{{s}_{0},\dots ,{s}_{T}{,o}_{0}={z}_{0},\dots ,{o}_{T}={z}_{T}\right\}=\prod _{t=0}^{T}{P}_{r}\left\{{s}_{t}\mid {s}_{t-1}\right\}{P}_{r}\left\{{o}_{t}={z}_{t}\mid {s}_{t}\right\};{\phantom{\rule{1em}{0ex}}P}_{r}\left\{{s}_{0}\mid {s}_{-1}\right\}={p}_{0}$$
(5)
$$\sum _{t=0}^{T}\left[{V}_{i}\left(t\right)+{B}_{j,i}\left(t\right)\right]$$
(6)
$${W}_{i}\left(t\right)=\underset{j}{max}\left[{W}_{j}\left(t-1\right)+{B}_{j,i}\left(t\right)\right]+{V}_{i}\left(t\right)$$
(7)
$${z}_{t}=\sum _{l=0}^{L-1}{h}_{l}{x}_{t-l}+{w}_{t}$$
(8)
$${W}_{t}\left({\mathbf{s}}_{t}\right)=\underset{{\mathbf{s}}_{t}}{max}\mathrm{log}{\phantom{\rule{.2em}{0ex}}P}_{r}\left\{{o}_{t}={z}_{t}|{\mathbf{s}}_{t}\right\}+{W}_{t-1}\left({\mathbf{s}}_{t-1}\right)$$