Abstract

The inscription of a two-dimensional periodic lattice in the Schott IOG1 phosphate glass, by employing a laser assisted selective chemical etching method, is presented here. A two step patterning approach is employed, wherein damage is induced into the glass volume by exposure to intense laser radiation and subsequently, a chemical development in an alkali solution, selectively etches the exposed areas. A simple four beam interferometric setup is used for defining the two-dimensional periodic pattern on the sample surface. The exposures were performed by using the output of a high coherence 213nm, 150ps Nd:YAG laser; while the chemical developing was carried out in aqueous KOH solution. The periodic structures inscribed have periodicities of the order of 500nm and depth greater than 200nm. These Bragg reflectors are characterized by means of diffraction efficiency, and surface topology by employing atomic force and scanning electron microscopy. Issues related with the interferometric and wet etching processes are also presented and discussed.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photosensitivity of ion-exchanged Er-doped phosphate glass using 248nm excimer laser radiation

Stavros Pissadakis, Aris Ikiades, Ping Hua, Anna K. Sheridan, and James S. Wilkinson
Opt. Express 12(14) 3131-3136 (2004)

Er3+/Yb3+-codoped phosphate glass for short-length high-gain fiber lasers and amplifiers

Fengxiao Wang, Feng Song, Shuangxin An, Wenshun Wan, Hao Guo, Shujing Liu, and Jianguo Tian
Appl. Opt. 54(5) 1198-1205 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3,444 (2004)
    [Crossref]
  2. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of Photonic Crystals for the visible spectrum by Holographic Lithography,” Nature 404,53 (2000)
    [Crossref] [PubMed]
  3. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82,2758 (2003)
    [Crossref]
  4. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12,5221–5228 (2004)
    [Crossref] [PubMed]
  5. J. Klein-Wiele and P. Simon, “Fabrication of Periodic Nanostructures by Phase-Controlled Multiple-Beam Interference,” Appl. Phys. Lett. 83,4707–4709 (2003)
    [Crossref]
  6. R. Böhme and K. Zimmer, “Laser etching of periodic 1D- and 2D submicron relief gratings on pre-structured fused silica surface,” SPIE 6182,147–157 (2006)
  7. Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
    [Crossref]
  8. S. Yliniemi, J. Albert, Q. Wang, and S. Honkanen, “UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides,” Opt. Express 14,2898–2903 (2006)
    [Crossref] [PubMed]
  9. B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
    [Crossref]
  10. J. Nishii and H. Yamanaka, “Bragg gratings printed upon thin glass films by excimer laser irradiation and selective chemical etching,” Appl. Opt. 36,6852–6856 (1997)
    [Crossref]
  11. C. Pappas and S. Pissadakis, “Periodic Nanostructuring of Er/Yb-codoped IOG1 Phosphate Glass by using ultraviolet laser-assisted Selective Chemical Etching,” J. Appl. Phys. 100,114308 (2006)
    [Crossref]
  12. S. Pissadakis, A. Ikiades, P. Hua, A. Sheridan, and J. Wilkinson, “Photosensitivity of ion-exchanged Er-doped phosphate glass using 248nm excimer laser radiation,” Opt. Express 12,3131–3136 (2004)
    [Crossref] [PubMed]
  13. S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B 23,2470–2478 (2006)
    [Crossref]
  14. N. E. Alekseev, A. A. Izyneev, V. B. Kravchenko, Y. S. Milyavskii, and S. P. Rozman, “Etching of phosphate glasses,” Glass Ceram. 40,344–346 (1983)
    [Crossref]
  15. A. S. Barnes, C. G. Pantano, and S. D. Conzone, “Surface treatments for rare-earth doped phosphate glass,” in SPIE 4452,115–125 (2001)
    [Crossref]
  16. B. C. Bunker, G. W. Arnold, and J. A. Wilder, “Phosphate Glass Dissolution in Aqueous Solutions,” J. Non-Cryst. Solids, 64,291–316 (1984)
    [Crossref]
  17. Z. J. Huang, S. Sakka, T. Yoko, and K. Kamiya, “Hydration of phosphate and borate glasses at high temperatures and pressures,” J. Mat. Sc. 19,2705–2712 (1984)
    [Crossref]
  18. D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263,240–250 (2000)
    [Crossref]
  19. F. Dürr, G. Kulik, H. G. Limberger, R. P. Salathé, S. L. Semjonov, and E. M. Dianov, “Hydrogen loading and UV-irradiation induced etch rate changes in phosphorus-doped fibers,” Opt. Express 12,5770–5776 (2004)
    [Crossref] [PubMed]
  20. S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88,201909 (2006)
    [Crossref]
  21. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A.A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14,8360–8366 (2006)
    [Crossref] [PubMed]
  22. R. A. B. Devine, “Macroscopic and microscopic effects of radiation in amorphous SiO2,” Nucl. Instr. Meth. Phys. Res. B 91,378–390 (1994)
    [Crossref]
  23. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59,12767–12770 (1999)
    [Crossref]
  24. D. Chanda, L. Abolghasemi, and P. R. Herman, “One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates,” Opt. Express 14,8568–8577 (2006)
    [Crossref] [PubMed]

2006 (7)

R. Böhme and K. Zimmer, “Laser etching of periodic 1D- and 2D submicron relief gratings on pre-structured fused silica surface,” SPIE 6182,147–157 (2006)

S. Yliniemi, J. Albert, Q. Wang, and S. Honkanen, “UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides,” Opt. Express 14,2898–2903 (2006)
[Crossref] [PubMed]

C. Pappas and S. Pissadakis, “Periodic Nanostructuring of Er/Yb-codoped IOG1 Phosphate Glass by using ultraviolet laser-assisted Selective Chemical Etching,” J. Appl. Phys. 100,114308 (2006)
[Crossref]

S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B 23,2470–2478 (2006)
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88,201909 (2006)
[Crossref]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A.A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14,8360–8366 (2006)
[Crossref] [PubMed]

D. Chanda, L. Abolghasemi, and P. R. Herman, “One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates,” Opt. Express 14,8568–8577 (2006)
[Crossref] [PubMed]

2004 (4)

2003 (3)

J. Klein-Wiele and P. Simon, “Fabrication of Periodic Nanostructures by Phase-Controlled Multiple-Beam Interference,” Appl. Phys. Lett. 83,4707–4709 (2003)
[Crossref]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82,2758 (2003)
[Crossref]

2001 (1)

A. S. Barnes, C. G. Pantano, and S. D. Conzone, “Surface treatments for rare-earth doped phosphate glass,” in SPIE 4452,115–125 (2001)
[Crossref]

2000 (2)

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263,240–250 (2000)
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of Photonic Crystals for the visible spectrum by Holographic Lithography,” Nature 404,53 (2000)
[Crossref] [PubMed]

1999 (2)

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59,12767–12770 (1999)
[Crossref]

1997 (1)

1994 (1)

R. A. B. Devine, “Macroscopic and microscopic effects of radiation in amorphous SiO2,” Nucl. Instr. Meth. Phys. Res. B 91,378–390 (1994)
[Crossref]

1984 (2)

B. C. Bunker, G. W. Arnold, and J. A. Wilder, “Phosphate Glass Dissolution in Aqueous Solutions,” J. Non-Cryst. Solids, 64,291–316 (1984)
[Crossref]

Z. J. Huang, S. Sakka, T. Yoko, and K. Kamiya, “Hydration of phosphate and borate glasses at high temperatures and pressures,” J. Mat. Sc. 19,2705–2712 (1984)
[Crossref]

1983 (1)

N. E. Alekseev, A. A. Izyneev, V. B. Kravchenko, Y. S. Milyavskii, and S. P. Rozman, “Etching of phosphate glasses,” Glass Ceram. 40,344–346 (1983)
[Crossref]

Abolghasemi, L.

Albert, J.

Alekseev, N. E.

N. E. Alekseev, A. A. Izyneev, V. B. Kravchenko, Y. S. Milyavskii, and S. P. Rozman, “Etching of phosphate glasses,” Glass Ceram. 40,344–346 (1983)
[Crossref]

Arnold, G. W.

B. C. Bunker, G. W. Arnold, and J. A. Wilder, “Phosphate Glass Dissolution in Aqueous Solutions,” J. Non-Cryst. Solids, 64,291–316 (1984)
[Crossref]

Bado, P.

Barnes, A. S.

A. S. Barnes, C. G. Pantano, and S. D. Conzone, “Surface treatments for rare-earth doped phosphate glass,” in SPIE 4452,115–125 (2001)
[Crossref]

Bellouard, Y.

Biswas, R.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59,12767–12770 (1999)
[Crossref]

Blanco, A.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

Böhme, R.

R. Böhme and K. Zimmer, “Laser etching of periodic 1D- and 2D submicron relief gratings on pre-structured fused silica surface,” SPIE 6182,147–157 (2006)

Bunker, B. C.

B. C. Bunker, G. W. Arnold, and J. A. Wilder, “Phosphate Glass Dissolution in Aqueous Solutions,” J. Non-Cryst. Solids, 64,291–316 (1984)
[Crossref]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3,444 (2004)
[Crossref]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of Photonic Crystals for the visible spectrum by Holographic Lithography,” Nature 404,53 (2000)
[Crossref] [PubMed]

Chan, C. T.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59,12767–12770 (1999)
[Crossref]

Chanda, D.

Chichkov, B.

Colomb, T.

Conzone, S. D.

A. S. Barnes, C. G. Pantano, and S. D. Conzone, “Surface treatments for rare-earth doped phosphate glass,” in SPIE 4452,115–125 (2001)
[Crossref]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of Photonic Crystals for the visible spectrum by Holographic Lithography,” Nature 404,53 (2000)
[Crossref] [PubMed]

Depeursinge, C.

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3,444 (2004)
[Crossref]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

Devine, R. A. B.

R. A. B. Devine, “Macroscopic and microscopic effects of radiation in amorphous SiO2,” Nucl. Instr. Meth. Phys. Res. B 91,378–390 (1994)
[Crossref]

Dianov, E. M.

Dugan, M.

Dürr, F.

Ebeling, P.

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263,240–250 (2000)
[Crossref]

Ehrt, D.

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263,240–250 (2000)
[Crossref]

Enkrich, C.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

Freymann, G. von

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3,444 (2004)
[Crossref]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

Gamaly, E.G.

S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88,201909 (2006)
[Crossref]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of Photonic Crystals for the visible spectrum by Holographic Lithography,” Nature 404,53 (2000)
[Crossref] [PubMed]

Hashimoto, T.

S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88,201909 (2006)
[Crossref]

Herman, P. R.

Ho, K. M.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59,12767–12770 (1999)
[Crossref]

Honkanen, S.

Hu, Y.

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

Hua, P.

Huang, Z. J.

Z. J. Huang, S. Sakka, T. Yoko, and K. Kamiya, “Hydration of phosphate and borate glasses at high temperatures and pressures,” J. Mat. Sc. 19,2705–2712 (1984)
[Crossref]

Hwang, B.C.

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

Ianoul, A.

Ikiades, A.

Izyneev, A. A.

N. E. Alekseev, A. A. Izyneev, V. B. Kravchenko, Y. S. Milyavskii, and S. P. Rozman, “Etching of phosphate glasses,” Glass Ceram. 40,344–346 (1983)
[Crossref]

Jiang, S.

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

Juodkazis, S.

S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88,201909 (2006)
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82,2758 (2003)
[Crossref]

Kamiya, K.

Z. J. Huang, S. Sakka, T. Yoko, and K. Kamiya, “Hydration of phosphate and borate glasses at high temperatures and pressures,” J. Mat. Sc. 19,2705–2712 (1984)
[Crossref]

Klein-Wiele, J.

J. Klein-Wiele and P. Simon, “Fabrication of Periodic Nanostructures by Phase-Controlled Multiple-Beam Interference,” Appl. Phys. Lett. 83,4707–4709 (2003)
[Crossref]

Koch, W.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82,2758 (2003)
[Crossref]

Kravchenko, V. B.

N. E. Alekseev, A. A. Izyneev, V. B. Kravchenko, Y. S. Milyavskii, and S. P. Rozman, “Etching of phosphate glasses,” Glass Ceram. 40,344–346 (1983)
[Crossref]

Kulik, G.

Laronche, A.

Limberger, H. G.

Lucas, J.

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

Luo, T.

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

Luther-Davies, B.

S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88,201909 (2006)
[Crossref]

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82,2758 (2003)
[Crossref]

Meisel, D. C.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

Miklyaev, Y.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

Milyavskii, Y. S.

N. E. Alekseev, A. A. Izyneev, V. B. Kravchenko, Y. S. Milyavskii, and S. P. Rozman, “Etching of phosphate glasses,” Glass Ceram. 40,344–346 (1983)
[Crossref]

Misawa, H.

S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88,201909 (2006)
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82,2758 (2003)
[Crossref]

Mizeikis, V.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82,2758 (2003)
[Crossref]

Natura, U.

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263,240–250 (2000)
[Crossref]

Nishii, J.

Ovsianikov, A.

Pantano, C. G.

A. S. Barnes, C. G. Pantano, and S. D. Conzone, “Surface treatments for rare-earth doped phosphate glass,” in SPIE 4452,115–125 (2001)
[Crossref]

Pappas, C.

C. Pappas and S. Pissadakis, “Periodic Nanostructuring of Er/Yb-codoped IOG1 Phosphate Glass by using ultraviolet laser-assisted Selective Chemical Etching,” J. Appl. Phys. 100,114308 (2006)
[Crossref]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3,444 (2004)
[Crossref]

Peyghambarian, N.

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

Pissadakis, S.

C. Pappas and S. Pissadakis, “Periodic Nanostructuring of Er/Yb-codoped IOG1 Phosphate Glass by using ultraviolet laser-assisted Selective Chemical Etching,” J. Appl. Phys. 100,114308 (2006)
[Crossref]

S. Pissadakis, A. Ikiades, P. Hua, A. Sheridan, and J. Wilkinson, “Photosensitivity of ion-exchanged Er-doped phosphate glass using 248nm excimer laser radiation,” Opt. Express 12,3131–3136 (2004)
[Crossref] [PubMed]

Rozman, S. P.

N. E. Alekseev, A. A. Izyneev, V. B. Kravchenko, Y. S. Milyavskii, and S. P. Rozman, “Etching of phosphate glasses,” Glass Ceram. 40,344–346 (1983)
[Crossref]

Said, A.A.

Sakka, S.

Z. J. Huang, S. Sakka, T. Yoko, and K. Kamiya, “Hydration of phosphate and borate glasses at high temperatures and pressures,” J. Mat. Sc. 19,2705–2712 (1984)
[Crossref]

Salathé, R. P.

Semjonov, S. L.

Serbin, J.

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of Photonic Crystals for the visible spectrum by Holographic Lithography,” Nature 404,53 (2000)
[Crossref] [PubMed]

Sheridan, A.

Sigalas, M. M.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59,12767–12770 (1999)
[Crossref]

Simon, P.

J. Klein-Wiele and P. Simon, “Fabrication of Periodic Nanostructures by Phase-Controlled Multiple-Beam Interference,” Appl. Phys. Lett. 83,4707–4709 (2003)
[Crossref]

Smektala, F.

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3,444 (2004)
[Crossref]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59,12767–12770 (1999)
[Crossref]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of Photonic Crystals for the visible spectrum by Holographic Lithography,” Nature 404,53 (2000)
[Crossref] [PubMed]

Wang, Q.

Watson, J.

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3,444 (2004)
[Crossref]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

Wilder, J. A.

B. C. Bunker, G. W. Arnold, and J. A. Wilder, “Phosphate Glass Dissolution in Aqueous Solutions,” J. Non-Cryst. Solids, 64,291–316 (1984)
[Crossref]

Wilkinson, J.

Yamanaka, H.

Yliniemi, S.

Yoko, T.

Z. J. Huang, S. Sakka, T. Yoko, and K. Kamiya, “Hydration of phosphate and borate glasses at high temperatures and pressures,” J. Mat. Sc. 19,2705–2712 (1984)
[Crossref]

Zimmer, K.

R. Böhme and K. Zimmer, “Laser etching of periodic 1D- and 2D submicron relief gratings on pre-structured fused silica surface,” SPIE 6182,147–157 (2006)

Appl. Opt. (1)

Appl. Phys. Lett. (4)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82,2758 (2003)
[Crossref]

J. Klein-Wiele and P. Simon, “Fabrication of Periodic Nanostructures by Phase-Controlled Multiple-Beam Interference,” Appl. Phys. Lett. 83,4707–4709 (2003)
[Crossref]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82,1284 (2003)
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88,201909 (2006)
[Crossref]

Electron. Lett. (1)

B.C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, and N. Peyghambarian, “Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1dB/cm,” Electron. Lett. 35,1007–1009 (1999)
[Crossref]

Glass Ceram. (1)

N. E. Alekseev, A. A. Izyneev, V. B. Kravchenko, Y. S. Milyavskii, and S. P. Rozman, “Etching of phosphate glasses,” Glass Ceram. 40,344–346 (1983)
[Crossref]

in SPIE (1)

A. S. Barnes, C. G. Pantano, and S. D. Conzone, “Surface treatments for rare-earth doped phosphate glass,” in SPIE 4452,115–125 (2001)
[Crossref]

J. Appl. Phys. (1)

C. Pappas and S. Pissadakis, “Periodic Nanostructuring of Er/Yb-codoped IOG1 Phosphate Glass by using ultraviolet laser-assisted Selective Chemical Etching,” J. Appl. Phys. 100,114308 (2006)
[Crossref]

J. Mat. Sc. (1)

Z. J. Huang, S. Sakka, T. Yoko, and K. Kamiya, “Hydration of phosphate and borate glasses at high temperatures and pressures,” J. Mat. Sc. 19,2705–2712 (1984)
[Crossref]

J. Non-Cryst. Solids (2)

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,” J. Non-Cryst. Solids 263,240–250 (2000)
[Crossref]

B. C. Bunker, G. W. Arnold, and J. A. Wilder, “Phosphate Glass Dissolution in Aqueous Solutions,” J. Non-Cryst. Solids, 64,291–316 (1984)
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of Photonic Crystals for the visible spectrum by Holographic Lithography,” Nature 404,53 (2000)
[Crossref] [PubMed]

Nature Mat. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3,444 (2004)
[Crossref]

Nucl. Instr. Meth. Phys. Res. B (1)

R. A. B. Devine, “Macroscopic and microscopic effects of radiation in amorphous SiO2,” Nucl. Instr. Meth. Phys. Res. B 91,378–390 (1994)
[Crossref]

Opt. Express (6)

Phys. Rev. B (1)

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59,12767–12770 (1999)
[Crossref]

SPIE (1)

R. Böhme and K. Zimmer, “Laser etching of periodic 1D- and 2D submicron relief gratings on pre-structured fused silica surface,” SPIE 6182,147–157 (2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Four-beam interferometric setup used for exposing the two-dimensional periodic pattern. A composite beam splitting element is employed to split the beam emitted from the 213nm, 150ps Nd:YAG laser into multiple beams. A beam selecting aperture (BS) allows only the ±1 first diffraction orders to propagate. (L) 60cm focal length lens, (BSE) beam splitting element, (BS) beam selector, (M1, M2, M3, M4) metal coated mirrors, (S) sample.
Fig. 2
Fig. 2 Diffraction efficiency as a function of etching time for a 2D periodic structure inscribed in IOG-1 glass with 136mJ/cm2 and 36000 pulses. The diffraction efficiency values that refer to the Y-scattering orders have been given negative values solely for assisting observation.
Fig. 3.
Fig. 3. (a) Cross-section image of an IOG1 glass sample exposed to 133mJ/cm2 energy density and 36000 pulses. (b) Absorption spectrum of the pristine Er/Yb-codoped IOG1 glass.
Fig. 4.
Fig. 4. AFM scans of the same sample inscribed with 136mJ/cm2 and 36000 pulses. The scans were performed at the 5th min, 27th min and during the saturation (36th and 45th min) of the chemical etching process.
Fig. 5.
Fig. 5. Large area AFM scans of two-dimensional Bragg gratings inscribed in Er/Yb-codoped IOG1 phosphate glass, obtained at different instances of the chemical etching process.
Fig. 6.
Fig. 6. SEM images of the photonic crystal inscribed with 134mJ/cm2 and developed in 1M KOH aqueous solution for 45 minutes.

Metrics