Abstract

We propose an optical multicarrier generation method for radio-over-fiber (ROF) systems. The multicarrier generator is composed of a phase-modulated laser and two chirped fiber Bragg gratings used as flattening filters. The chirped gratings are spectrally tailored to equalize the intrinsically uneven envelope of the phase-modulated laser spectrum. A flattened multicarrier spectrum with 7 carriers at a frequency spacing of 12.5 GHz is demonstrated with less than 2 dB peak-to-peak variations and 40 dB optical signal-to-noise ratio (OSNR). We evaluate the quality of the multicarrier generator by using it as an externally modulated source for 802.11 compliant signals. We performed error vector magnitude (EVM) measurements on each of the filtered carrier and found an average value of -32.8 dB compared to -36.2 dB for a tunable laser source. The results show that the multicarrier source could be used for error free transmission.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency Quadrupler for Millimeter-Wave Multiband OFDM Ultrawideband Wireless Signals and Distribution Over Fiber Systems

Mohmoud Mohamed, Bouchaib Hraimel, Xiupu Zhang, Meer Nazmus Sakib, and Ke Wu
J. Opt. Commun. Netw. 1(5) 428-438 (2009)

Bidirectional direct modulation CATV and phase remodulation radio-over-fiber transport systems

Wen-Shing Tsai, Hsien-Li Ma, Hai-Han Lu, Ying-Pyng Lin, Hung-Yi Chen, and Shr-Chi Yan
Opt. Express 18(25) 26077-26083 (2010)

Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link

Huai-Yung Wang, Yu-Chieh Chi, and Gong-Ru Lin
Opt. Express 24(16) 17654-17669 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Mori, H. Takara, and S. Kawanishi, “Analysis and design of supercontinuum generation in a single-mode optical fiber,” J. Opt. Soc. Am. B 18, 1780–1792 (2001).
    [Crossref]
  2. J. Veselka and S. Korotky, “A multiwavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett. 10, 958–960 (1998).
    [Crossref]
  3. M. Fujiwara, M. Teshima, J. -I. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flatteded optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol. 21, 2705–2714 (2003).
    [Crossref]
  4. S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11, 551–553 (1999).
    [Crossref]
  5. Y. Kim, S. Doucet, and S. LaRochelle, “Multicarrier generator using a phase modulated laser signal and tailored chirped fiber Bragg gratings,” in Bragg Grating Photosensitivity and Poling (Optical Society of America, Quebec, Quebec, 2007), paper BTuB4.
  6. H. Kim, J. H. Cho, S. Kim, K. -U. Song, H. Lee, J. Lee, B. Kim, Y. Oh, J. Lee, and S. Hwang, “Radio-over-fiber systems for TDD-based OFDMA wireless communication systems,” J. Lightwave Technol. 25, 3419–3427 (2007).
    [Crossref]
  7. M. M. Sisto, M. E. Mousa Pasandi, S. Doucet, S. LaRochelle, and L. A. Rusch, “Optical phase and amplitude control for beamforming with multiwavelength Gires-Tournois Bragg grating cavities,” in the Proceedings of the Fourth IASTED Internationl Conference on Antennas, Radar and Wave (International Association of Science and Technology for Development, Montreal, Quebec, 2007), pp. 238–243.
  8. M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Gain optimization by modulator bias control in radio-over-fiber links,” J. Lightwave Technol. 18, 1840–1842 (2006).
  9. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 11, 1529–1531 (1997).
    [Crossref]
  10. Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
    [Crossref]
  11. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generator using a Mach-Zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
    [Crossref] [PubMed]
  12. M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11, 536–538 (1999).
    [Crossref]

2007 (2)

2006 (1)

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Gain optimization by modulator bias control in radio-over-fiber links,” J. Lightwave Technol. 18, 1840–1842 (2006).

2003 (1)

2002 (1)

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

2001 (1)

1999 (2)

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11, 551–553 (1999).
[Crossref]

1998 (1)

J. Veselka and S. Korotky, “A multiwavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett. 10, 958–960 (1998).
[Crossref]

1997 (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 11, 1529–1531 (1997).
[Crossref]

Bennet, S.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11, 551–553 (1999).
[Crossref]

Burr, E.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11, 551–553 (1999).
[Crossref]

Cai, B.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11, 551–553 (1999).
[Crossref]

Cho, J. H.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 11, 1529–1531 (1997).
[Crossref]

Doucet, S.

M. M. Sisto, M. E. Mousa Pasandi, S. Doucet, S. LaRochelle, and L. A. Rusch, “Optical phase and amplitude control for beamforming with multiwavelength Gires-Tournois Bragg grating cavities,” in the Proceedings of the Fourth IASTED Internationl Conference on Antennas, Radar and Wave (International Association of Science and Technology for Development, Montreal, Quebec, 2007), pp. 238–243.

Y. Kim, S. Doucet, and S. LaRochelle, “Multicarrier generator using a phase modulated laser signal and tailored chirped fiber Bragg gratings,” in Bragg Grating Photosensitivity and Poling (Optical Society of America, Quebec, Quebec, 2007), paper BTuB4.

Fujiwara, M.

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 11, 1529–1531 (1997).
[Crossref]

Gough, O.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11, 551–553 (1999).
[Crossref]

Guy, M.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Hwang, S.

Iwatsuki, K.

Izutsu, M.

Kani, J. -I.

Kawanishi, S.

Kawanishi, T.

Kim, B.

Kim, H.

Kim, S.

Kim, Y.

Y. Kim, S. Doucet, and S. LaRochelle, “Multicarrier generator using a phase modulated laser signal and tailored chirped fiber Bragg gratings,” in Bragg Grating Photosensitivity and Poling (Optical Society of America, Quebec, Quebec, 2007), paper BTuB4.

Korotky, S.

J. Veselka and S. Korotky, “A multiwavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett. 10, 958–960 (1998).
[Crossref]

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 11, 1529–1531 (1997).
[Crossref]

LaRochelle, S.

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Gain optimization by modulator bias control in radio-over-fiber links,” J. Lightwave Technol. 18, 1840–1842 (2006).

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

M. M. Sisto, M. E. Mousa Pasandi, S. Doucet, S. LaRochelle, and L. A. Rusch, “Optical phase and amplitude control for beamforming with multiwavelength Gires-Tournois Bragg grating cavities,” in the Proceedings of the Fourth IASTED Internationl Conference on Antennas, Radar and Wave (International Association of Science and Technology for Development, Montreal, Quebec, 2007), pp. 238–243.

Y. Kim, S. Doucet, and S. LaRochelle, “Multicarrier generator using a phase modulated laser signal and tailored chirped fiber Bragg gratings,” in Bragg Grating Photosensitivity and Poling (Optical Society of America, Quebec, Quebec, 2007), paper BTuB4.

Lauzon, J.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Lee, H.

Lee, J.

Liu, Y.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 11, 1529–1531 (1997).
[Crossref]

Mori, K.

Oh, Y.

Pasandi, M. E. Mousa

M. M. Sisto, M. E. Mousa Pasandi, S. Doucet, S. LaRochelle, and L. A. Rusch, “Optical phase and amplitude control for beamforming with multiwavelength Gires-Tournois Bragg grating cavities,” in the Proceedings of the Fourth IASTED Internationl Conference on Antennas, Radar and Wave (International Association of Science and Technology for Development, Montreal, Quebec, 2007), pp. 238–243.

Rochette, M.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Rusch, L. A.

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Gain optimization by modulator bias control in radio-over-fiber links,” J. Lightwave Technol. 18, 1840–1842 (2006).

M. M. Sisto, M. E. Mousa Pasandi, S. Doucet, S. LaRochelle, and L. A. Rusch, “Optical phase and amplitude control for beamforming with multiwavelength Gires-Tournois Bragg grating cavities,” in the Proceedings of the Fourth IASTED Internationl Conference on Antennas, Radar and Wave (International Association of Science and Technology for Development, Montreal, Quebec, 2007), pp. 238–243.

Sakamoto, T.

Seeds, A. J.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11, 551–553 (1999).
[Crossref]

Sisto, M. M.

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Gain optimization by modulator bias control in radio-over-fiber links,” J. Lightwave Technol. 18, 1840–1842 (2006).

M. M. Sisto, M. E. Mousa Pasandi, S. Doucet, S. LaRochelle, and L. A. Rusch, “Optical phase and amplitude control for beamforming with multiwavelength Gires-Tournois Bragg grating cavities,” in the Proceedings of the Fourth IASTED Internationl Conference on Antennas, Radar and Wave (International Association of Science and Technology for Development, Montreal, Quebec, 2007), pp. 238–243.

Song, K. -U.

Suzuki, H.

Takachio, N.

Takara, H.

Teshima, M.

Trépanier, F.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Veselka, J.

J. Veselka and S. Korotky, “A multiwavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett. 10, 958–960 (1998).
[Crossref]

Yang, J.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

Yao, J.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (5)

J. Veselka and S. Korotky, “A multiwavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett. 10, 958–960 (1998).
[Crossref]

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11, 551–553 (1999).
[Crossref]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 11, 1529–1531 (1997).
[Crossref]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (2)

M. M. Sisto, M. E. Mousa Pasandi, S. Doucet, S. LaRochelle, and L. A. Rusch, “Optical phase and amplitude control for beamforming with multiwavelength Gires-Tournois Bragg grating cavities,” in the Proceedings of the Fourth IASTED Internationl Conference on Antennas, Radar and Wave (International Association of Science and Technology for Development, Montreal, Quebec, 2007), pp. 238–243.

Y. Kim, S. Doucet, and S. LaRochelle, “Multicarrier generator using a phase modulated laser signal and tailored chirped fiber Bragg gratings,” in Bragg Grating Photosensitivity and Poling (Optical Society of America, Quebec, Quebec, 2007), paper BTuB4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the proposed multicarrier generator composed of a CW laser, a phase modulator (PM), and a sideband power-equalizing module (SPEM) with an EDFA sandwiched between the two tailored CFBGs
Fig. 2.
Fig. 2. (a). Phase-modulated optical spectrum before the SPEM (point A), (b) transmission loss spectrum of the SPEM filters, and (c) flattened multicarrier spectrum after the SPEM (point C).
Fig. 3.
Fig. 3. Details of the iterative algorithm for the tailored chirped Bragg grating design.
Fig. 4.
Fig. 4. Characteristics of the two CFBGs, (a) and (b) the apodization profile of the CFBG 1 and CFBG 2 respectively, (c) and (d) transmission spectra of CFBG 1 and CFBG 2 respectively plotted with the target transmission spectra TTAR, the simulated spectra TSIM, and the experimental result TEXP.
Fig. 5.
Fig. 5. Output spectra at different points of the multicarrier generation procedure; Spectrum A at the input of the SPEM, spectrum B after the first CFBG and an EDFA, and Spectrum C at the output of the SPEM
Fig. 6.
Fig. 6. Schematic diagram used for the EVM measurements of the proposed multicarrier generator
Fig. 7.
Fig. 7. (a). Optical spectrum of the multicarrier signal measured after the tunable filter is set to the positive first order sideband (b). EVM values measured for all multicarriers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EVM dB = 10 log 10 ( n r n z n 2 n r n 2 ) ,

Metrics