Abstract

We report the first room temperature CW operation of two dimensional single-mode edge-emitting photonic crystal Bragg lasers. Single-mode lasing with single-lobed, diffraction limited far-fields is obtained for 100µm wide and 550µm long on-chip devices. We also demonstrate the tuning of the lasing wavelength by changing the transverse lattice constant of the photonic crystal. This enables a fine wavelength tuning sensitivity (change of the lasing wavelength/change of the lattice constant) of 0.072. This dependence proves that the lasing mode is selected by the photonic crystal lattice.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically pumped edge-emitting photonic crystal lasers with angled facets

Lin Zhu, Guy A. DeRose, Axel Scherer, and Amnon Yariv
Opt. Lett. 32(10) 1256-1258 (2007)

Lateral cavity photonic crystal surface-emitting laser with ultralow threshold

Wanhua Zheng, Wenjun Zhou, Yufei Wang, Anjin Liu, Wei Chen, Hailing Wang, Feiya Fu, and Aiyi Qi
Opt. Lett. 36(21) 4140-4142 (2011)

Electrically-pumped, broad-area, single-mode photonic crystal lasers

Lin Zhu, Philip Chak, Joyce K.S. Poon, Guy A. DeRose, Amnon Yariv, and Axel Scherer
Opt. Express 15(10) 5966-5975 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
    [Crossref]
  2. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two dimensional lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
    [Crossref]
  3. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
    [Crossref] [PubMed]
  4. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562–1568 (2004).
    [Crossref] [PubMed]
  5. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
    [Crossref]
  6. I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback lasers,” Appl. Phys. Lett. 78, 1475–1477 (2001).
    [Crossref]
  7. C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, “Broad-stripe near-diffraction-limited mid-infrared laser with a second order photonic crystal distributed feedback grating,” IEEE Photon. Technol. Lett. 16, 1250–1252 (2004).
    [Crossref]
  8. R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch. “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
    [Crossref]
  9. L. Zhu, G. A. DeRose, A. Scherer, and A. Yariv, “Electrically-pumped, edge-emitting photonic crystal lasers with angled facets,” Opt. Lett. 32, 1256–1258 (2007).
    [Crossref] [PubMed]
  10. H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distribution feedback laser,” Appl. Phys. Lett. 90, 121135 (2007).
    [Crossref]
  11. L. Zhu, X. K. Sun, G. A. DeRose, A. Scherer, and A. Yariv, “Continuous-wave operation of electrically-pumped, single-mode, edge-emitting photonic crystal Bragg lasers,” Appl. Phys. Lett. 90, 261116 (2007).
    [Crossref]
  12. K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
    [Crossref]
  13. L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer, “Electrically-pumped, broad-area, single-mode photonic crystal lasers,” Opt. Express 15, 5966–5975 (2007).
    [Crossref] [PubMed]
  14. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley Interscience, 1995).
  15. D. Botez and D. R. Scifres. Diode Laser Arrays (Cambridge University Press, 1986).

2007 (4)

L. Zhu, G. A. DeRose, A. Scherer, and A. Yariv, “Electrically-pumped, edge-emitting photonic crystal lasers with angled facets,” Opt. Lett. 32, 1256–1258 (2007).
[Crossref] [PubMed]

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distribution feedback laser,” Appl. Phys. Lett. 90, 121135 (2007).
[Crossref]

L. Zhu, X. K. Sun, G. A. DeRose, A. Scherer, and A. Yariv, “Continuous-wave operation of electrically-pumped, single-mode, edge-emitting photonic crystal Bragg lasers,” Appl. Phys. Lett. 90, 261116 (2007).
[Crossref]

L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer, “Electrically-pumped, broad-area, single-mode photonic crystal lasers,” Opt. Express 15, 5966–5975 (2007).
[Crossref] [PubMed]

2004 (2)

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562–1568 (2004).
[Crossref] [PubMed]

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, “Broad-stripe near-diffraction-limited mid-infrared laser with a second order photonic crystal distributed feedback grating,” IEEE Photon. Technol. Lett. 16, 1250–1252 (2004).
[Crossref]

2003 (1)

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

2001 (2)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref] [PubMed]

I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback lasers,” Appl. Phys. Lett. 78, 1475–1477 (2001).
[Crossref]

1999 (2)

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two dimensional lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[Crossref]

1998 (1)

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch. “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
[Crossref]

1973 (1)

S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
[Crossref]

Bewley, W. W.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, “Broad-stripe near-diffraction-limited mid-infrared laser with a second order photonic crystal distributed feedback grating,” IEEE Photon. Technol. Lett. 16, 1250–1252 (2004).
[Crossref]

Bogatov, A.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

Botez, D.

D. Botez and D. R. Scifres. Diode Laser Arrays (Cambridge University Press, 1986).

Bugge, F.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

Canedy, C. L.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, “Broad-stripe near-diffraction-limited mid-infrared laser with a second order photonic crystal distributed feedback grating,” IEEE Photon. Technol. Lett. 16, 1250–1252 (2004).
[Crossref]

Chak, P.

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two dimensional lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[Crossref]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley Interscience, 1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley Interscience, 1995).

Demars, S.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch. “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
[Crossref]

DeRose, G. A.

Deubert, S.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distribution feedback laser,” Appl. Phys. Lett. 90, 121135 (2007).
[Crossref]

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Drakin, A. E.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

Erbert, G.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

Forchel, A.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distribution feedback laser,” Appl. Phys. Lett. 90, 121135 (2007).
[Crossref]

Fricke, J.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

Guther, R.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

Hardy, A.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch. “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
[Crossref]

Hofmann, H.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distribution feedback laser,” Appl. Phys. Lett. 90, 121135 (2007).
[Crossref]

Imada, M.

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562–1568 (2004).
[Crossref] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two dimensional lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[Crossref]

Joannopoulos, J. D.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Kamp, M.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distribution feedback laser,” Appl. Phys. Lett. 90, 121135 (2007).
[Crossref]

Kim, C. S.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, “Broad-stripe near-diffraction-limited mid-infrared laser with a second order photonic crystal distributed feedback grating,” IEEE Photon. Technol. Lett. 16, 1250–1252 (2004).
[Crossref]

Kim, M.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, “Broad-stripe near-diffraction-limited mid-infrared laser with a second order photonic crystal distributed feedback grating,” IEEE Photon. Technol. Lett. 16, 1250–1252 (2004).
[Crossref]

Lang, R. J.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch. “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
[Crossref]

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Meyer, J. R.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, “Broad-stripe near-diffraction-limited mid-infrared laser with a second order photonic crystal distributed feedback grating,” IEEE Photon. Technol. Lett. 16, 1250–1252 (2004).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback lasers,” Appl. Phys. Lett. 78, 1475–1477 (2001).
[Crossref]

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref] [PubMed]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two dimensional lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[Crossref]

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Noda, S.

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562–1568 (2004).
[Crossref] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two dimensional lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[Crossref]

Ohnishi, D.

Okano, T.

Paschke, K.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

Poon, J. K. S.

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two dimensional lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[Crossref]

Scherer, A.

Scherer, H.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distribution feedback laser,” Appl. Phys. Lett. 90, 121135 (2007).
[Crossref]

Schoenfelder, A.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch. “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
[Crossref]

Scifres, D. R.

D. Botez and D. R. Scifres. Diode Laser Arrays (Cambridge University Press, 1986).

Sheem, S.

S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
[Crossref]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Stratonnikov, A. A.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

Sun, X. K.

L. Zhu, X. K. Sun, G. A. DeRose, A. Scherer, and A. Yariv, “Continuous-wave operation of electrically-pumped, single-mode, edge-emitting photonic crystal Bragg lasers,” Appl. Phys. Lett. 90, 261116 (2007).
[Crossref]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two dimensional lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[Crossref]

Vurgaftman, I.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, “Broad-stripe near-diffraction-limited mid-infrared laser with a second order photonic crystal distributed feedback grating,” IEEE Photon. Technol. Lett. 16, 1250–1252 (2004).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback lasers,” Appl. Phys. Lett. 78, 1475–1477 (2001).
[Crossref]

Wang, S.

S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
[Crossref]

Welch., D.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch. “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
[Crossref]

Wenzel, H.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

Yariv, A.

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref] [PubMed]

Zhu, L.

Zurko, K. D.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch. “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
[Crossref]

Appl. Phys. Lett. (6)

S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
[Crossref]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two dimensional lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[Crossref]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback lasers,” Appl. Phys. Lett. 78, 1475–1477 (2001).
[Crossref]

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distribution feedback laser,” Appl. Phys. Lett. 90, 121135 (2007).
[Crossref]

L. Zhu, X. K. Sun, G. A. DeRose, A. Scherer, and A. Yariv, “Continuous-wave operation of electrically-pumped, single-mode, edge-emitting photonic crystal Bragg lasers,” Appl. Phys. Lett. 90, 261116 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch. “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron. 34, 2196–2210 (1998).
[Crossref]

IEEE J. Sel. Top Quantum Electron. (1)

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, and G. Erbert, “Properties of ion-implanted high-power anged-grating distributed-feedback lasers,” IEEE J. Sel. Top Quantum Electron. 9, 1172–1178 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, “Broad-stripe near-diffraction-limited mid-infrared laser with a second order photonic crystal distributed feedback grating,” IEEE Photon. Technol. Lett. 16, 1250–1252 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Science (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref] [PubMed]

Other (2)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley Interscience, 1995).

D. Botez and D. R. Scifres. Diode Laser Arrays (Cambridge University Press, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Device design and wafer structure. (a) Schematic of a two dimensional photonic crystal Bragg laser. a is the transverse lattice constant, b is the longitudinal lattice constant, and θtilt is the facet tilt angle. (b) Epitaxial structures of the material used to fabricate the lasers. The design uses a standard graded-index separate confinement heterostructure.
Fig. 2.
Fig. 2. SEM images of the fabricated devices. (a) Overall view of the photonic crystal lattice. The image is taken after the etch of InP. (b) The cross section of a fabricated PC Bragg laser with top metal contacts. Each etched hole is filled with planarization polymer.
Fig. 3.
Fig. 3. (a). L-I and I-V curves for the photonic crystal Bragg laser. The turn-on voltage is 0.75V and the resistance is 0.68Ω. The threshold is 560mA. (b). The emission spectrum at the injection current I=1.2A
Fig. 4.
Fig. 4. (a). Near field and (b) far field profiles of the photonic crystal Bragg laser (I=1.2A). The insets are direct images captured by infrared CCD cameras.
Fig. 5.
Fig. 5. Lasing spectra at ~1.1× threshold. These four lasers have the same longitudinal lattice constant b=490nm but different transverse lattice contants a=0.96 µm, 1.0 µm, 1.04 µm, and 1.08 µm. The measured laser wavelengths are 1546.9nm, 1550.3nm, 1552.8nm and 1555.6nm. A small tuning sensitivity of 0.072 is obtained.

Metrics