Abstract

Tunable diode laser spectroscopy (TDLS) normally observes small fractional absorptive reductions in the light flux. We show, that instead a signal increase on a zero background can be obtained. A Michelson interferometer, which is initially balanced out in destructive interference, is perturbed by gas absorption in one of its arms. Both theoretical analysis and experimental demonstration show that the proposed zero-background TDLS can improve the achievable signal-to-noise ratio.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Active feedback regulation of a Michelson interferometer to achieve zero-background absorption measurements

Patrik Lundin, Zuguang Guan, and Sune Svanberg
Appl. Opt. 50(3) 373-378 (2011)

Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line

Arup Lal Chakraborty, Keith Ruxton, Walter Johnstone, Michael Lengden, and Kevin Duffin
Opt. Express 17(12) 9602-9607 (2009)

High sensitivity detection of transient infrared absorption using tunable diode lasers

Paul H. Beckwith, Carl E. Brown, David J. Danagher, Donald R. Smith, and John Reid
Appl. Opt. 26(13) 2643-2649 (1987)

References

  • View by:
  • |
  • |
  • |

  1. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulated spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985).
    [Crossref]
  2. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: Demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [Crossref]
  3. H. I. Schiff, G. I. Macay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., (Wiley, New York1994), p. 239–333.
  4. P. Werle and F. D’Amato, eds., Special Issue: Field Laser Applications in Industry and Research, Appl. Phys. B. 92, 303–474 (2008).
    [Crossref]
  5. W. M. Fairbank, T. W. Hänsch, and A. L. Schawlow, “Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence,” J. Opt. Soc. Am. 65, 199–204 (1975).
    [Crossref]
  6. W. Neunhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Localized visible Ba+ mono-ion oscillator,” Phys. Rev. A 22, 1137–1140 (1980).
    [Crossref]
  7. M. W. Sigrist, “Air monitoring by laser photoacoustic spectroscopy,” Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., (Wiley, New York1994), p. 163–238.
  8. C. Wieman and T. W. Hänsch, “Doppler-free polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
    [Crossref]
  9. T. W. Hänsch, I. S. Shahin, and A. L. Schawlow, “High resolution saturation spectroscopy of the sodium D line with a pulsed tunable dye laser,” Phys. Rev. Lett. 27, 707–710 (1971).
    [Crossref]
  10. J. P. Dakin, H. O. Edwards, and B. H. Weigl, “Progress with optical gas sensors using correlation spectroscopy,” Sens. Actuators B 29, 87–93 (1995).
    [Crossref]
  11. L. S. Rothman, et al., “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer. 96, 139–204 (2004).
    [Crossref]
  12. B. Couillaud, L. A. Bloomfield, and T. W. Hänsch, “Generation of continous-wave radiation near 243 nm by sum frequency mixing in an external ring cavity,” Opt. Lett. 8, 259–261 (1983).
    [Crossref] [PubMed]
  13. D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
    [Crossref]

2008 (1)

P. Werle and F. D’Amato, eds., Special Issue: Field Laser Applications in Industry and Research, Appl. Phys. B. 92, 303–474 (2008).
[Crossref]

2004 (1)

L. S. Rothman, et al., “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer. 96, 139–204 (2004).
[Crossref]

1998 (1)

1995 (1)

J. P. Dakin, H. O. Edwards, and B. H. Weigl, “Progress with optical gas sensors using correlation spectroscopy,” Sens. Actuators B 29, 87–93 (1995).
[Crossref]

1988 (1)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[Crossref]

1985 (1)

1983 (1)

1980 (1)

W. Neunhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Localized visible Ba+ mono-ion oscillator,” Phys. Rev. A 22, 1137–1140 (1980).
[Crossref]

1976 (1)

C. Wieman and T. W. Hänsch, “Doppler-free polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

1975 (1)

1971 (1)

T. W. Hänsch, I. S. Shahin, and A. L. Schawlow, “High resolution saturation spectroscopy of the sodium D line with a pulsed tunable dye laser,” Phys. Rev. Lett. 27, 707–710 (1971).
[Crossref]

Bechara, J.

H. I. Schiff, G. I. Macay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., (Wiley, New York1994), p. 239–333.

Bjorklund, G. C.

Bloomfield, L. A.

Couillaud, B.

Dakin, J. P.

J. P. Dakin, H. O. Edwards, and B. H. Weigl, “Progress with optical gas sensors using correlation spectroscopy,” Sens. Actuators B 29, 87–93 (1995).
[Crossref]

Dehmelt, H.

W. Neunhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Localized visible Ba+ mono-ion oscillator,” Phys. Rev. A 22, 1137–1140 (1980).
[Crossref]

Edwards, H. O.

J. P. Dakin, H. O. Edwards, and B. H. Weigl, “Progress with optical gas sensors using correlation spectroscopy,” Sens. Actuators B 29, 87–93 (1995).
[Crossref]

Fairbank, W. M.

Gehrtz, M.

Hall, J. L.

Hänsch, T. W.

B. Couillaud, L. A. Bloomfield, and T. W. Hänsch, “Generation of continous-wave radiation near 243 nm by sum frequency mixing in an external ring cavity,” Opt. Lett. 8, 259–261 (1983).
[Crossref] [PubMed]

C. Wieman and T. W. Hänsch, “Doppler-free polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

W. M. Fairbank, T. W. Hänsch, and A. L. Schawlow, “Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence,” J. Opt. Soc. Am. 65, 199–204 (1975).
[Crossref]

T. W. Hänsch, I. S. Shahin, and A. L. Schawlow, “High resolution saturation spectroscopy of the sodium D line with a pulsed tunable dye laser,” Phys. Rev. Lett. 27, 707–710 (1971).
[Crossref]

Hohenstatt, M.

W. Neunhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Localized visible Ba+ mono-ion oscillator,” Phys. Rev. A 22, 1137–1140 (1980).
[Crossref]

Ma, L.-S.

Macay, G. I.

H. I. Schiff, G. I. Macay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., (Wiley, New York1994), p. 239–333.

Mortimore, D. B.

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[Crossref]

Neunhauser, W.

W. Neunhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Localized visible Ba+ mono-ion oscillator,” Phys. Rev. A 22, 1137–1140 (1980).
[Crossref]

Rothman, L. S.

L. S. Rothman, et al., “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer. 96, 139–204 (2004).
[Crossref]

Schawlow, A. L.

W. M. Fairbank, T. W. Hänsch, and A. L. Schawlow, “Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence,” J. Opt. Soc. Am. 65, 199–204 (1975).
[Crossref]

T. W. Hänsch, I. S. Shahin, and A. L. Schawlow, “High resolution saturation spectroscopy of the sodium D line with a pulsed tunable dye laser,” Phys. Rev. Lett. 27, 707–710 (1971).
[Crossref]

Schiff, H. I.

H. I. Schiff, G. I. Macay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., (Wiley, New York1994), p. 239–333.

Shahin, I. S.

T. W. Hänsch, I. S. Shahin, and A. L. Schawlow, “High resolution saturation spectroscopy of the sodium D line with a pulsed tunable dye laser,” Phys. Rev. Lett. 27, 707–710 (1971).
[Crossref]

Sigrist, M. W.

M. W. Sigrist, “Air monitoring by laser photoacoustic spectroscopy,” Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., (Wiley, New York1994), p. 163–238.

Toschek, P.

W. Neunhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Localized visible Ba+ mono-ion oscillator,” Phys. Rev. A 22, 1137–1140 (1980).
[Crossref]

Weigl, B. H.

J. P. Dakin, H. O. Edwards, and B. H. Weigl, “Progress with optical gas sensors using correlation spectroscopy,” Sens. Actuators B 29, 87–93 (1995).
[Crossref]

Whittaker, E. A.

Wieman, C.

C. Wieman and T. W. Hänsch, “Doppler-free polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

Ye, J.

Appl. Phys. B. (1)

P. Werle and F. D’Amato, eds., Special Issue: Field Laser Applications in Industry and Research, Appl. Phys. B. 92, 303–474 (2008).
[Crossref]

J. Lightwave Technol. (1)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Quant. Spectrosc. Radiat. Transfer. (1)

L. S. Rothman, et al., “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer. 96, 139–204 (2004).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

W. Neunhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Localized visible Ba+ mono-ion oscillator,” Phys. Rev. A 22, 1137–1140 (1980).
[Crossref]

Phys. Rev. Lett. (2)

C. Wieman and T. W. Hänsch, “Doppler-free polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

T. W. Hänsch, I. S. Shahin, and A. L. Schawlow, “High resolution saturation spectroscopy of the sodium D line with a pulsed tunable dye laser,” Phys. Rev. Lett. 27, 707–710 (1971).
[Crossref]

Sens. Actuators B (1)

J. P. Dakin, H. O. Edwards, and B. H. Weigl, “Progress with optical gas sensors using correlation spectroscopy,” Sens. Actuators B 29, 87–93 (1995).
[Crossref]

Other (2)

H. I. Schiff, G. I. Macay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., (Wiley, New York1994), p. 239–333.

M. W. Sigrist, “Air monitoring by laser photoacoustic spectroscopy,” Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., (Wiley, New York1994), p. 163–238.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a). Schematic diagram of zero-background TDLS; (b) the principle for forming the zero background.
Fig. 2.
Fig. 2. Calculated results of (a) responsivity and (b) SNR for an increasing absorption ratio, for different values of δ. The gray dashed curve in (b) shows the SNR of a direct absorption TDLS.
Fig. 3.
Fig. 3. (a). Measured light intensity corresponding to the reference arm (gray) and the gas sensing arm (dark); (b). SNR comparison between direct absorption TDLS (gray curve at top) and the system presented (dark curve at bottom). The inset of (b) shows that the calculated spectrum agrees with the measured one.
Fig. 4.
Fig. 4. (a). Oscillating pattern with an envelope including spectroscopic information; (b) and (c) show the details of windows b and c in (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SNR = κ I ( N s I ) 2 + ( β I ) 2 + N t 2 .
SNR = I s ( N s I s ) 2 + ( β I s ) 2 + N t 2 .
I s 1 4 P ( 1 4 k 2 A 2 + k A δ + δ 2 ) .
SNR 1 N s I S I B I S .

Metrics