Abstract

A deep UV 266 nm laser induced LIBS plasma has been enhanced by using a simultaneous 10.6 μm CO2 laser pulse at standoff ranges up to 55 m for several targets including metals, ceramics and plastics. The LIBS plasma emission was produced, for the first time, by a 266 nm laser and was enhanced by several orders of magnitude using the CO2 laser pulse. The temperature of the enhanced LIBS plasma was measured, for the first time, and was observed to increase by about 3000K due to the addition of the CO2 laser pulse.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse

Dennis K. Killinger, Susan D. Allen, Robert D. Waterbury, Chris Stefano, and Edwin L. Dottery
Opt. Express 15(20) 12905-12915 (2007)

Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement

L.B. Guo, W. Hu, B.Y. Zhang, X.N. He, C.M. Li, Y.S. Zhou, Z.X. Cai, X.Y. Zeng, and Y.F. Lu
Opt. Express 19(15) 14067-14075 (2011)

Detection of trace elements in nondegradable organic spent clay waste using optimized dual-pulsed laser induced breakdown spectrometer

Ahmed Asaad I. Khalil, Mohammed A. Gondal, and Mohamed A. Dastageer
Appl. Opt. 53(8) 1709-1717 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy. (Cambridge University Press, 2006).
  2. A. Cremers and L. J. Radzeimki, Handbook of Laser induced breakdown Spectroscopy. (Wiley, 2006).
  3. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).
  4. C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
  5. L. M. Cabalin and J. J. Laserna., “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta, Part B 53, 723–730 (1998).
  6. S. Palanco, C Lopez-Moreno, J. J. Laserna, and F. DeLucia, “Design, construction and assessment of a field -deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).
  7. J. Scaffidi, W. Pearman, J. C. Carter, and M. Angel, “Temporal dependence of the enhancement of material removal in femtosecond-nanosecond dual pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43, 6492–6499 (2004).
    [PubMed]
  8. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15, 12905–12915 (2007).
    [PubMed]
  9. American National Standard for Safe use of Lasers Outdoors, Laser Institute of America, ANSI Z136.6 (2005).
  10. R. D. Waterbury, P. M. Pellegrino, E. L. Dottery, A. R. Ford, and J. B. Rose, “Results if a UV TEPS/Raman system for standoff detection of energetic materials,” Chemical and Biological Defense Physical Science and Technology conference, New Orleans (2008).
  11. R. Waterbury, A. Pal, D. K. Killinger, J. Rose, E. Dottery, and G. Ontai, “Standoff LIBS measurements of energetic materials using a 266 nm excitation laser,” Proc. SPIE 6954, 409 (2008).
  12. A. A. Khalil, M. Richardson, C. Barnett, and L. Johnson, “Double Pulse UV laser induced breakdown spectroscopy of stainless steel,” Appl. Spectrosc. 73, 735–742 (2006).
  13. K. J. Grant and G. L. Paul, “Electron temperature and density profiles of Excimer laser-induced plasmas,” Appl. Spectrosc. 44, 1349–1354 (1990).
  14. D. Lacroix and G. Jeandel, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).
  15. G. V. Marr, Plasma Spectroscopy, (Amsterdam: Elsevier, 1968)
  16. H. R. Griem, Plasma Spectroscopy, (McGraw Hill, New York, 1964)
  17. Y. Ralchenko, A. E. Kramida, and J. Reader NIST ASD Team, “NIST Atomic Spectra Database,” National Institute of Standards and Technology, Gaithersburg, MD (2008). http://physics.nist.gov/asd3.
  18. D. Plutov and D. K. Killinger, “Atmospheric transmission and Lidar modeling of LIBS and Raman remote sensing of distant compounds,” paper JMA 24, OSA:LACSEA conference, St. Petersburg, Fl (2008).
  19. A. Yariv, Quantum Electronics (Wiley & Sons, New York, 1989).
  20. S. Yamada, “Ultraviolet and infrared laser excited two-color multiphoton ionization for determination of molecules in solution,” Anal. Chem. 61, 612–615 (1989).
  21. J. A. Torresano and M. Santos, “One and two-color infrared mutiphoton dissociation of C3F6,” J. Phys. Chem. A. 101, 2221–2228 (1997).

2008 (1)

R. Waterbury, A. Pal, D. K. Killinger, J. Rose, E. Dottery, and G. Ontai, “Standoff LIBS measurements of energetic materials using a 266 nm excitation laser,” Proc. SPIE 6954, 409 (2008).

2007 (1)

2006 (4)

A. A. Khalil, M. Richardson, C. Barnett, and L. Johnson, “Double Pulse UV laser induced breakdown spectroscopy of stainless steel,” Appl. Spectrosc. 73, 735–742 (2006).

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

S. Palanco, C Lopez-Moreno, J. J. Laserna, and F. DeLucia, “Design, construction and assessment of a field -deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).

2004 (1)

1998 (1)

L. M. Cabalin and J. J. Laserna., “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta, Part B 53, 723–730 (1998).

1997 (2)

D. Lacroix and G. Jeandel, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).

J. A. Torresano and M. Santos, “One and two-color infrared mutiphoton dissociation of C3F6,” J. Phys. Chem. A. 101, 2221–2228 (1997).

1990 (1)

1989 (1)

S. Yamada, “Ultraviolet and infrared laser excited two-color multiphoton ionization for determination of molecules in solution,” Anal. Chem. 61, 612–615 (1989).

Allen, S. D.

Angel, M.

Barnett, C.

A. A. Khalil, M. Richardson, C. Barnett, and L. Johnson, “Double Pulse UV laser induced breakdown spectroscopy of stainless steel,” Appl. Spectrosc. 73, 735–742 (2006).

Cabalin, L. M.

L. M. Cabalin and J. J. Laserna., “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta, Part B 53, 723–730 (1998).

Carter, J. C.

Cremers, A.

A. Cremers and L. J. Radzeimki, Handbook of Laser induced breakdown Spectroscopy. (Wiley, 2006).

DeLucia, F.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

S. Palanco, C Lopez-Moreno, J. J. Laserna, and F. DeLucia, “Design, construction and assessment of a field -deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).

Dottery, E.

R. Waterbury, A. Pal, D. K. Killinger, J. Rose, E. Dottery, and G. Ontai, “Standoff LIBS measurements of energetic materials using a 266 nm excitation laser,” Proc. SPIE 6954, 409 (2008).

Dottery, E. L.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15, 12905–12915 (2007).
[PubMed]

R. D. Waterbury, P. M. Pellegrino, E. L. Dottery, A. R. Ford, and J. B. Rose, “Results if a UV TEPS/Raman system for standoff detection of energetic materials,” Chemical and Biological Defense Physical Science and Technology conference, New Orleans (2008).

Ford, A. R.

R. D. Waterbury, P. M. Pellegrino, E. L. Dottery, A. R. Ford, and J. B. Rose, “Results if a UV TEPS/Raman system for standoff detection of energetic materials,” Chemical and Biological Defense Physical Science and Technology conference, New Orleans (2008).

Grant, K. J.

Griem, H. R.

H. R. Griem, Plasma Spectroscopy, (McGraw Hill, New York, 1964)

Jeandel, G.

D. Lacroix and G. Jeandel, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).

Johnson, L.

A. A. Khalil, M. Richardson, C. Barnett, and L. Johnson, “Double Pulse UV laser induced breakdown spectroscopy of stainless steel,” Appl. Spectrosc. 73, 735–742 (2006).

Khalil, A. A.

A. A. Khalil, M. Richardson, C. Barnett, and L. Johnson, “Double Pulse UV laser induced breakdown spectroscopy of stainless steel,” Appl. Spectrosc. 73, 735–742 (2006).

Killinger, D. K.

R. Waterbury, A. Pal, D. K. Killinger, J. Rose, E. Dottery, and G. Ontai, “Standoff LIBS measurements of energetic materials using a 266 nm excitation laser,” Proc. SPIE 6954, 409 (2008).

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15, 12905–12915 (2007).
[PubMed]

D. Plutov and D. K. Killinger, “Atmospheric transmission and Lidar modeling of LIBS and Raman remote sensing of distant compounds,” paper JMA 24, OSA:LACSEA conference, St. Petersburg, Fl (2008).

Kramida, A. E.

Y. Ralchenko, A. E. Kramida, and J. Reader NIST ASD Team, “NIST Atomic Spectra Database,” National Institute of Standards and Technology, Gaithersburg, MD (2008). http://physics.nist.gov/asd3.

Lacroix, D.

D. Lacroix and G. Jeandel, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).

Laserna, J. J.

S. Palanco, C Lopez-Moreno, J. J. Laserna, and F. DeLucia, “Design, construction and assessment of a field -deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

L. M. Cabalin and J. J. Laserna., “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta, Part B 53, 723–730 (1998).

Lopez-Moreno, C

S. Palanco, C Lopez-Moreno, J. J. Laserna, and F. DeLucia, “Design, construction and assessment of a field -deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).

Lopez-Moreno, C.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

López-Moreno, C.

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

Marr, G. V.

G. V. Marr, Plasma Spectroscopy, (Amsterdam: Elsevier, 1968)

Miziolek, A. W.

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

Ontai, G.

R. Waterbury, A. Pal, D. K. Killinger, J. Rose, E. Dottery, and G. Ontai, “Standoff LIBS measurements of energetic materials using a 266 nm excitation laser,” Proc. SPIE 6954, 409 (2008).

Pal, A.

R. Waterbury, A. Pal, D. K. Killinger, J. Rose, E. Dottery, and G. Ontai, “Standoff LIBS measurements of energetic materials using a 266 nm excitation laser,” Proc. SPIE 6954, 409 (2008).

Palanco, S.

S. Palanco, C Lopez-Moreno, J. J. Laserna, and F. DeLucia, “Design, construction and assessment of a field -deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

Paul, G. L.

Pearman, W.

Pellegrino, P. M.

R. D. Waterbury, P. M. Pellegrino, E. L. Dottery, A. R. Ford, and J. B. Rose, “Results if a UV TEPS/Raman system for standoff detection of energetic materials,” Chemical and Biological Defense Physical Science and Technology conference, New Orleans (2008).

Plutov, D.

D. Plutov and D. K. Killinger, “Atmospheric transmission and Lidar modeling of LIBS and Raman remote sensing of distant compounds,” paper JMA 24, OSA:LACSEA conference, St. Petersburg, Fl (2008).

Radzeimki, L. J.

A. Cremers and L. J. Radzeimki, Handbook of Laser induced breakdown Spectroscopy. (Wiley, 2006).

Ralchenko, Y.

Y. Ralchenko, A. E. Kramida, and J. Reader NIST ASD Team, “NIST Atomic Spectra Database,” National Institute of Standards and Technology, Gaithersburg, MD (2008). http://physics.nist.gov/asd3.

Reader, J.

Y. Ralchenko, A. E. Kramida, and J. Reader NIST ASD Team, “NIST Atomic Spectra Database,” National Institute of Standards and Technology, Gaithersburg, MD (2008). http://physics.nist.gov/asd3.

Richardson, M.

A. A. Khalil, M. Richardson, C. Barnett, and L. Johnson, “Double Pulse UV laser induced breakdown spectroscopy of stainless steel,” Appl. Spectrosc. 73, 735–742 (2006).

Rose, J.

R. Waterbury, A. Pal, D. K. Killinger, J. Rose, E. Dottery, and G. Ontai, “Standoff LIBS measurements of energetic materials using a 266 nm excitation laser,” Proc. SPIE 6954, 409 (2008).

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

Rose, J. B.

R. D. Waterbury, P. M. Pellegrino, E. L. Dottery, A. R. Ford, and J. B. Rose, “Results if a UV TEPS/Raman system for standoff detection of energetic materials,” Chemical and Biological Defense Physical Science and Technology conference, New Orleans (2008).

Santos, M.

J. A. Torresano and M. Santos, “One and two-color infrared mutiphoton dissociation of C3F6,” J. Phys. Chem. A. 101, 2221–2228 (1997).

Scaffidi, J.

Stefano, C.

Torresano, J. A.

J. A. Torresano and M. Santos, “One and two-color infrared mutiphoton dissociation of C3F6,” J. Phys. Chem. A. 101, 2221–2228 (1997).

Walters, R. A.

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

Waterbury, R.

R. Waterbury, A. Pal, D. K. Killinger, J. Rose, E. Dottery, and G. Ontai, “Standoff LIBS measurements of energetic materials using a 266 nm excitation laser,” Proc. SPIE 6954, 409 (2008).

Waterbury, R. D.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15, 12905–12915 (2007).
[PubMed]

R. D. Waterbury, P. M. Pellegrino, E. L. Dottery, A. R. Ford, and J. B. Rose, “Results if a UV TEPS/Raman system for standoff detection of energetic materials,” Chemical and Biological Defense Physical Science and Technology conference, New Orleans (2008).

Whitehouse, A. I.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

Yamada, S.

S. Yamada, “Ultraviolet and infrared laser excited two-color multiphoton ionization for determination of molecules in solution,” Anal. Chem. 61, 612–615 (1989).

Yariv, A.

A. Yariv, Quantum Electronics (Wiley & Sons, New York, 1989).

Anal. Chem. (1)

S. Yamada, “Ultraviolet and infrared laser excited two-color multiphoton ionization for determination of molecules in solution,” Anal. Chem. 61, 612–615 (1989).

Appl. Opt. (1)

Appl. Spectrosc. (2)

A. A. Khalil, M. Richardson, C. Barnett, and L. Johnson, “Double Pulse UV laser induced breakdown spectroscopy of stainless steel,” Appl. Spectrosc. 73, 735–742 (2006).

K. J. Grant and G. L. Paul, “Electron temperature and density profiles of Excimer laser-induced plasmas,” Appl. Spectrosc. 44, 1349–1354 (1990).

J. Anal. At. Spectrom. (2)

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55 (2006).

C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).

J. Appl. Phys. (1)

D. Lacroix and G. Jeandel, “Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,” J. Appl. Phys. 81, 6599–6606 (1997).

J. Phys. Chem. A. (1)

J. A. Torresano and M. Santos, “One and two-color infrared mutiphoton dissociation of C3F6,” J. Phys. Chem. A. 101, 2221–2228 (1997).

Opt. Express (1)

Proc. SPIE (1)

R. Waterbury, A. Pal, D. K. Killinger, J. Rose, E. Dottery, and G. Ontai, “Standoff LIBS measurements of energetic materials using a 266 nm excitation laser,” Proc. SPIE 6954, 409 (2008).

Spectrochim. Acta, Part B (2)

L. M. Cabalin and J. J. Laserna., “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta, Part B 53, 723–730 (1998).

S. Palanco, C Lopez-Moreno, J. J. Laserna, and F. DeLucia, “Design, construction and assessment of a field -deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).

Other (9)

American National Standard for Safe use of Lasers Outdoors, Laser Institute of America, ANSI Z136.6 (2005).

R. D. Waterbury, P. M. Pellegrino, E. L. Dottery, A. R. Ford, and J. B. Rose, “Results if a UV TEPS/Raman system for standoff detection of energetic materials,” Chemical and Biological Defense Physical Science and Technology conference, New Orleans (2008).

G. V. Marr, Plasma Spectroscopy, (Amsterdam: Elsevier, 1968)

H. R. Griem, Plasma Spectroscopy, (McGraw Hill, New York, 1964)

Y. Ralchenko, A. E. Kramida, and J. Reader NIST ASD Team, “NIST Atomic Spectra Database,” National Institute of Standards and Technology, Gaithersburg, MD (2008). http://physics.nist.gov/asd3.

D. Plutov and D. K. Killinger, “Atmospheric transmission and Lidar modeling of LIBS and Raman remote sensing of distant compounds,” paper JMA 24, OSA:LACSEA conference, St. Petersburg, Fl (2008).

A. Yariv, Quantum Electronics (Wiley & Sons, New York, 1989).

A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy. (Cambridge University Press, 2006).

A. Cremers and L. J. Radzeimki, Handbook of Laser induced breakdown Spectroscopy. (Wiley, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1. Schematic of Deep UV 266 nm LIBS and 10.6μm CO2 laser enhancement LIBS standoff system.
Fig. 2.
Fig. 2. LIBS emission signal from a pure Al target using a 266 nm Nd:YAG laser initiated plasma; standoff range of 25 m.
Fig. 3.
Fig. 3. LIBS signal from a pure ceramic (alumina) substrate using a pulsed CO2 laser initiated plasma as a function of CO2 energy density on the target.
Fig. 4.
Fig. 4. LIBS emission signal from a pure Al target using a 266 nm of Nd:YAG laser initiated plasma and 10.6 μm CO2 laser pulse; standoff range of 25 m.
Fig. 5.
Fig. 5. Oscilloscope trace of the CO2 laser and Nd:YAG laser pulses.
Fig. 6.
Fig. 6. LIBS spectrum from a pure Al target as a function of CO2 laser pulse delay compared to 266 nm Nd:YAG laser pulse; standoff range of 35 m.
Fig. 7.
Fig. 7. Various LIBS/TEPS emission lines as a function CO2 laser delay; stand-off range of 35 m.
Fig. 8.
Fig. 8. LIBS/TEPS signal on bare ceramic (alumina) substrate; standoff range of 20 m range.
Fig. 9.
Fig. 9. LIBS/TEPS signal on bare Copper substrate; standoff range of 20 m range.
Fig. 10.
Fig. 10. LIBS/TEPS signal on Iron substrate; standoff range of 20 m.
Fig. 11.
Fig. 11. LIBS/TEPS signal on Lead substrate; standoff range of 20 m.
Fig. 12.
Fig. 12. LIBS/TEPS signal on Plastic (polycarbonate) substrate; standoff range of 20 m.
Fig. 13.
Fig. 13. LIBS emission spectrum from Iron substrate when only the 266 nm Nd:YAG laser was used to generate the plasma; standoff range of 25 m.
Fig. 14.
Fig. 14. LIBS/TEPS emission spectrum from Iron substrate when both 266 nm Nd:YAG and 10.6 μm CO2 lasers were used to generate the plasma; standoff range of 25 m.
Fig. 15.
Fig. 15. Boltzmann plot of Fe (I) lines of the laser-induced plasma for 266 nm Nd:YAG LIBS, and enhanced LIBS/TEPS plasma using both Nd:YAG and CO2 laser pulses.
Fig. 16.
Fig. 16. Measured electron plasma temperature as a function of interpulse delays between the 266 nm Nd:YAG laser pulse and CO2 laser pulse.
Fig. 17.
Fig. 17. LIBS emission intensity for selected lines from Fe target, and measured plasma temperature, as a function of LIBS/TEPS CO2 laser pulse delay/overlap.
Fig. 18.
Fig. 18. LIBS/TEPS signal as a function of standoff range for an Al target.
Fig. 19.
Fig. 19. Volume of LIBS/TEPS ablated material for an Al target as a function of range.

Tables (2)

Tables Icon

Table 1. Identified species and LIBS/TEPS emission lines from various substrates.

Tables Icon

Table 2. Spectroscopic constants of the neutral Fe (I) lines used in Boltzmann plot temperature determination; from NIST database [15]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N j N i = g j g i e x p [ ( E j E i k T e ) ] ,
l n ( ε ji λ ji A ji g j ) = E j k T + C ,

Metrics