E. Buckley, “Holographic Laser Projection Technology,” SID Int. Symp. Digest Tech. Papers 39, 1074–1079 (2008).
[Crossref]
R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-Element Modeling of Liquid-Crystal Hydrodynamics With a Variable Degree of Order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[Crossref]
A. J. Davidson and S. J. Elston, “Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal,” J. Mod. Opt. 53, 979–989 (2006).
[Crossref]
Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. 23, 2014–2019 (2006).
[Crossref]
J. M. López-Doña, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fast-fourier-based three-dimensional full-vectorial beam propagation method,” IEEE Photonics Technol. Lett. 17, 2319–2321 (2005).
[Crossref]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106 (2005).
[Crossref]
N. Amarasinghe, E. Gartland, and J. Kelly, “Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations,” J. Opt. Soc. Am. 21, 1344–1361 (2004).
[Crossref]
J. C. Campbell, F. A. Blum, D. W. Shaw, and K. L. Lawlay, “GaAs Electro-optic directional coupler switch,” Appl. Phys. Lett. 27, 202–205 (1975).
[Crossref]
N. Amarasinghe, E. Gartland, and J. Kelly, “Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations,” J. Opt. Soc. Am. 21, 1344–1361 (2004).
[Crossref]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106 (2005).
[Crossref]
J. Beeckman, R. James, F. A. Fernandez, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” accepted for publication in J. Lightwave Technol. (2009).
[Crossref]
J. C. Campbell, F. A. Blum, D. W. Shaw, and K. L. Lawlay, “GaAs Electro-optic directional coupler switch,” Appl. Phys. Lett. 27, 202–205 (1975).
[Crossref]
E. Buckley, “Holographic Laser Projection Technology,” SID Int. Symp. Digest Tech. Papers 39, 1074–1079 (2008).
[Crossref]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106 (2005).
[Crossref]
J. C. Campbell, F. A. Blum, D. W. Shaw, and K. L. Lawlay, “GaAs Electro-optic directional coupler switch,” Appl. Phys. Lett. 27, 202–205 (1975).
[Crossref]
F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microw. Guid. Wave Lett. 8, 223–225 (1998).
[Crossref]
A. J. Davidson and S. J. Elston, “Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal,” J. Mod. Opt. 53, 979–989 (2006).
[Crossref]
R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-Element Modeling of Liquid-Crystal Hydrodynamics With a Variable Degree of Order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[Crossref]
J. Beeckman, R. James, F. A. Fernandez, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” accepted for publication in J. Lightwave Technol. (2009).
[Crossref]
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon, Oxford UK, 1993).
A. J. Davidson and S. J. Elston, “Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal,” J. Mod. Opt. 53, 979–989 (2006).
[Crossref]
Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. 23, 2014–2019 (2006).
[Crossref]
R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-Element Modeling of Liquid-Crystal Hydrodynamics With a Variable Degree of Order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[Crossref]
J. Beeckman, R. James, F. A. Fernandez, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” accepted for publication in J. Lightwave Technol. (2009).
[Crossref]
N. Amarasinghe, E. Gartland, and J. Kelly, “Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations,” J. Opt. Soc. Am. 21, 1344–1361 (2004).
[Crossref]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106 (2005).
[Crossref]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106 (2005).
[Crossref]
M. Koshiba and K. Inoue, “Simple and efficient finite-element analysis of microwave and optical waveguides,” IEEE Trans. Microwave Theory Tech. 40, 371–377 (1992).
[Crossref]
R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-Element Modeling of Liquid-Crystal Hydrodynamics With a Variable Degree of Order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[Crossref]
J. Beeckman, R. James, F. A. Fernandez, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” accepted for publication in J. Lightwave Technol. (2009).
[Crossref]
J. Jin, The finite element method in electromagnetics, 2nd edition (Wiley, New York US, 2002).
N. Amarasinghe, E. Gartland, and J. Kelly, “Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations,” J. Opt. Soc. Am. 21, 1344–1361 (2004).
[Crossref]
J. C. Campbell, F. A. Blum, D. W. Shaw, and K. L. Lawlay, “GaAs Electro-optic directional coupler switch,” Appl. Phys. Lett. 27, 202–205 (1975).
[Crossref]
J. M. López-Doña, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fast-fourier-based three-dimensional full-vectorial beam propagation method,” IEEE Photonics Technol. Lett. 17, 2319–2321 (2005).
[Crossref]
J. M. López-Doña, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fast-fourier-based three-dimensional full-vectorial beam propagation method,” IEEE Photonics Technol. Lett. 17, 2319–2321 (2005).
[Crossref]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106 (2005).
[Crossref]
J. Beeckman, R. James, F. A. Fernandez, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” accepted for publication in J. Lightwave Technol. (2009).
[Crossref]
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon, Oxford UK, 1993).
Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. 23, 2014–2019 (2006).
[Crossref]
J. C. Campbell, F. A. Blum, D. W. Shaw, and K. L. Lawlay, “GaAs Electro-optic directional coupler switch,” Appl. Phys. Lett. 27, 202–205 (1975).
[Crossref]
F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microw. Guid. Wave Lett. 8, 223–225 (1998).
[Crossref]
J. Beeckman, R. James, F. A. Fernandez, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” accepted for publication in J. Lightwave Technol. (2009).
[Crossref]
Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. 23, 2014–2019 (2006).
[Crossref]
J. M. López-Doña, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fast-fourier-based three-dimensional full-vectorial beam propagation method,” IEEE Photonics Technol. Lett. 17, 2319–2321 (2005).
[Crossref]
R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-Element Modeling of Liquid-Crystal Hydrodynamics With a Variable Degree of Order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[Crossref]
J. C. Campbell, F. A. Blum, D. W. Shaw, and K. L. Lawlay, “GaAs Electro-optic directional coupler switch,” Appl. Phys. Lett. 27, 202–205 (1975).
[Crossref]
F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microw. Guid. Wave Lett. 8, 223–225 (1998).
[Crossref]
J. M. López-Doña, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fast-fourier-based three-dimensional full-vectorial beam propagation method,” IEEE Photonics Technol. Lett. 17, 2319–2321 (2005).
[Crossref]
R. James, E. Willman, F. A. Fernandez, and S. E. Day, “Finite-Element Modeling of Liquid-Crystal Hydrodynamics With a Variable Degree of Order,” IEEE Trans. Electron Devices 53, 1575–1582 (2006).
[Crossref]
M. Koshiba and K. Inoue, “Simple and efficient finite-element analysis of microwave and optical waveguides,” IEEE Trans. Microwave Theory Tech. 40, 371–377 (1992).
[Crossref]
K. Saitoh and M. Koshiba, “e,” J. Lightwave Technol. 19, 405–413 (2001).
[Crossref]
D. Schulz, C. Glingener, M. Bludszuweit, and E. Voges, “Mixed finite element beam propagation method,” J. Lightwave Technol. 16, 1336–1342 (1998).
[Crossref]
M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000).
[Crossref]
A. J. Davidson and S. J. Elston, “Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal,” J. Mod. Opt. 53, 979–989 (2006).
[Crossref]
Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. 23, 2014–2019 (2006).
[Crossref]
N. Amarasinghe, E. Gartland, and J. Kelly, “Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations,” J. Opt. Soc. Am. 21, 1344–1361 (2004).
[Crossref]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulation of 2-D lateral light propagation in nematic-liquid-crystal cells with tilted molecules and nonlinear reorientational effect,” Opt. Quantum Electron. 37, 95–106 (2005).
[Crossref]
E. Buckley, “Holographic Laser Projection Technology,” SID Int. Symp. Digest Tech. Papers 39, 1074–1079 (2008).
[Crossref]
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon, Oxford UK, 1993).
GiD, the personal pre and post processor, http://gid.cimne.upc.es/.
J. Jin, The finite element method in electromagnetics, 2nd edition (Wiley, New York US, 2002).
J. Beeckman, R. James, F. A. Fernandez, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” accepted for publication in J. Lightwave Technol. (2009).
[Crossref]