J. C. Gates, C. H. Holmes, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “New geometry for planar UV written refractive index sensors,” Proc. SPIE 6585, 65850O (2007).
[Crossref]
S. Ho, M. L. Ng, S. M. Eaton, P. R. Herman, and J. S. Aitchison, “Single and Multi-Scan Femtosecond Laser Writing for Selective Chemical Etching of Glass Micro-Channels,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThJ4.
[PubMed]
S. Ho, S. Eaton, M. L. Ng, J. S. Aitchison, and P. R. Herman, University of Toronto, 10 King’s College Road, M5S 3G4 Toronto, Ontario, Canada, are preparing a manuscript to be called “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross-section patternable glass micro-channels.”
R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref]
[PubMed]
A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[Crossref]
[PubMed]
R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref]
[PubMed]
Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
[Crossref]
[PubMed]
C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]
C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867–1869 (2005).
[Crossref]
[PubMed]
V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[Crossref]
K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685–8695 (2009).
[Crossref]
[PubMed]
R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[Crossref]
V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[Crossref]
K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-chip device manufacture,” Appl. Phys. A 81, 1–10 (2005).
[Crossref]
Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144–1146 (2003).
[Crossref]
[PubMed]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High Sensitivity Evanescent Field Fiber Bragg Grating Sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]
D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluidics and Nanofluidics 4, 33–52 (2008).
[Crossref]
[PubMed]
C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]
C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867–1869 (2005).
[Crossref]
[PubMed]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High Sensitivity Evanescent Field Fiber Bragg Grating Sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]
R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref]
[PubMed]
L. Shah, A. Y. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
[Crossref]
[PubMed]
S. Ho, S. Eaton, M. L. Ng, J. S. Aitchison, and P. R. Herman, University of Toronto, 10 King’s College Road, M5S 3G4 Toronto, Ontario, Canada, are preparing a manuscript to be called “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross-section patternable glass micro-channels.”
H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express 16, 14015–14023 (2008).
[Crossref]
[PubMed]
H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
[Crossref]
[PubMed]
S. Ho, M. L. Ng, S. M. Eaton, P. R. Herman, and J. S. Aitchison, “Single and Multi-Scan Femtosecond Laser Writing for Selective Chemical Etching of Glass Micro-Channels,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThJ4.
[PubMed]
K. B. Mogensen, Y. C. Kwok, J. C. T. Eijkel, N. J. Petersen, A. Manz, and J. P. Kutter, “A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation,” Anal. Chem. 75, 4931–4936 (2003).
[Crossref]
[PubMed]
D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluidics and Nanofluidics 4, 33–52 (2008).
[Crossref]
[PubMed]
S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16, 1623–1631 (2008).
[Crossref]
[PubMed]
D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[Crossref]
A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[Crossref]
[PubMed]
J. C. Gates, C. H. Holmes, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “New geometry for planar UV written refractive index sensors,” Proc. SPIE 6585, 65850O (2007).
[Crossref]
J. C. Gates, C. H. Holmes, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “New geometry for planar UV written refractive index sensors,” Proc. SPIE 6585, 65850O (2007).
[Crossref]
W. W. Morey, G. Meltz, and W. H. Glenn, “Bragg-grating temperature and strain sensors,” in Proceedings of the 6th International Conference on Optical Fiber Sensors (Springer-Verlag, Paris, France, 1989), pp. 526–531.
M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9, 311–318 (2009).
[Crossref]
H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express 16, 14015–14023 (2008).
[Crossref]
[PubMed]
H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
[Crossref]
[PubMed]
S. Ho, M. L. Ng, S. M. Eaton, P. R. Herman, and J. S. Aitchison, “Single and Multi-Scan Femtosecond Laser Writing for Selective Chemical Etching of Glass Micro-Channels,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThJ4.
[PubMed]
S. Ho, S. Eaton, M. L. Ng, J. S. Aitchison, and P. R. Herman, University of Toronto, 10 King’s College Road, M5S 3G4 Toronto, Ontario, Canada, are preparing a manuscript to be called “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross-section patternable glass micro-channels.”
Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]
[PubMed]
M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9, 311–318 (2009).
[Crossref]
C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]
C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867–1869 (2005).
[Crossref]
[PubMed]
H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express 16, 14015–14023 (2008).
[Crossref]
[PubMed]
S. Ho, S. Eaton, M. L. Ng, J. S. Aitchison, and P. R. Herman, University of Toronto, 10 King’s College Road, M5S 3G4 Toronto, Ontario, Canada, are preparing a manuscript to be called “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross-section patternable glass micro-channels.”
S. Ho, M. L. Ng, S. M. Eaton, P. R. Herman, and J. S. Aitchison, “Single and Multi-Scan Femtosecond Laser Writing for Selective Chemical Etching of Glass Micro-Channels,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThJ4.
[PubMed]
J. C. Gates, C. H. Holmes, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “New geometry for planar UV written refractive index sensors,” Proc. SPIE 6585, 65850O (2007).
[Crossref]
K. B. Mogensen, N. J. Petersen, J. Hübner, and J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
[Crossref]
[PubMed]
M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9, 311–318 (2009).
[Crossref]
A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]
M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9, 311–318 (2009).
[Crossref]
R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” Journal of Molecular Recognition 17, 151–161 (2004).
[Crossref]
[PubMed]
R. Kashyap, Fiber Bragg gratings (Academic Press, San Diego, CA, 1999).
Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]
[PubMed]
M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9, 311–318 (2009).
[Crossref]
K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25, 3498–3512 (2004).
[Crossref]
[PubMed]
G. T. A. Kovac, Micromachined Transducers Sourcebook(McGraw Hill, New York, 1998).
K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25, 3498–3512 (2004).
[Crossref]
[PubMed]
K. B. Mogensen, Y. C. Kwok, J. C. T. Eijkel, N. J. Petersen, A. Manz, and J. P. Kutter, “A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation,” Anal. Chem. 75, 4931–4936 (2003).
[Crossref]
[PubMed]
K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42, 4072–4079 (2003).
[Crossref]
[PubMed]
K. B. Mogensen, N. J. Petersen, J. Hübner, and J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
[Crossref]
[PubMed]
K. B. Mogensen, Y. C. Kwok, J. C. T. Eijkel, N. J. Petersen, A. Manz, and J. P. Kutter, “A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation,” Anal. Chem. 75, 4931–4936 (2003).
[Crossref]
[PubMed]
V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High Sensitivity Evanescent Field Fiber Bragg Grating Sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High Sensitivity Evanescent Field Fiber Bragg Grating Sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]
V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[Crossref]
D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluidics and Nanofluidics 4, 33–52 (2008).
[Crossref]
[PubMed]
S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16, 1623–1631 (2008).
[Crossref]
[PubMed]
K. B. Mogensen, Y. C. Kwok, J. C. T. Eijkel, N. J. Petersen, A. Manz, and J. P. Kutter, “A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation,” Anal. Chem. 75, 4931–4936 (2003).
[Crossref]
[PubMed]
R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref]
[PubMed]
R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[Crossref]
R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[Crossref]
V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[Crossref]
V. Maselli, “Femtosecond laser fabrication of optical waveguides and microfluidic channels,” Ph.D. Thesis, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133Milano, Italy (2007).
A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]
W. W. Morey, G. Meltz, and W. H. Glenn, “Bragg-grating temperature and strain sensors,” in Proceedings of the 6th International Conference on Optical Fiber Sensors (Springer-Verlag, Paris, France, 1989), pp. 526–531.
K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-chip device manufacture,” Appl. Phys. A 81, 1–10 (2005).
[Crossref]
Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144–1146 (2003).
[Crossref]
[PubMed]
K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25, 3498–3512 (2004).
[Crossref]
[PubMed]
K. B. Mogensen, Y. C. Kwok, J. C. T. Eijkel, N. J. Petersen, A. Manz, and J. P. Kutter, “A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation,” Anal. Chem. 75, 4931–4936 (2003).
[Crossref]
[PubMed]
K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42, 4072–4079 (2003).
[Crossref]
[PubMed]
K. B. Mogensen, N. J. Petersen, J. Hübner, and J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
[Crossref]
[PubMed]
W. W. Morey, G. Meltz, and W. H. Glenn, “Bragg-grating temperature and strain sensors,” in Proceedings of the 6th International Conference on Optical Fiber Sensors (Springer-Verlag, Paris, France, 1989), pp. 526–531.
S. Ho, S. Eaton, M. L. Ng, J. S. Aitchison, and P. R. Herman, University of Toronto, 10 King’s College Road, M5S 3G4 Toronto, Ontario, Canada, are preparing a manuscript to be called “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross-section patternable glass micro-channels.”
S. Ho, M. L. Ng, S. M. Eaton, P. R. Herman, and J. S. Aitchison, “Single and Multi-Scan Femtosecond Laser Writing for Selective Chemical Etching of Glass Micro-Channels,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThJ4.
[PubMed]
R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref]
[PubMed]
K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685–8695 (2009).
[Crossref]
[PubMed]
R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[Crossref]
V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[Crossref]
A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[Crossref]
D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[Crossref]
K. B. Mogensen, Y. C. Kwok, J. C. T. Eijkel, N. J. Petersen, A. Manz, and J. P. Kutter, “A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation,” Anal. Chem. 75, 4931–4936 (2003).
[Crossref]
[PubMed]
K. B. Mogensen, N. J. Petersen, J. Hübner, and J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
[Crossref]
[PubMed]
Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]
[PubMed]
A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[Crossref]
[PubMed]
C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]
K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685–8695 (2009).
[Crossref]
[PubMed]
R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[Crossref]
V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[Crossref]
C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]
C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867–1869 (2005).
[Crossref]
[PubMed]
R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref]
[PubMed]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High Sensitivity Evanescent Field Fiber Bragg Grating Sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]
D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[Crossref]
A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[Crossref]
[PubMed]
Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]
[PubMed]
C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]
C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867–1869 (2005).
[Crossref]
[PubMed]
J. C. Gates, C. H. Holmes, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “New geometry for planar UV written refractive index sensors,” Proc. SPIE 6585, 65850O (2007).
[Crossref]
A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[Crossref]
[PubMed]
R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref]
[PubMed]
K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-chip device manufacture,” Appl. Phys. A 81, 1–10 (2005).
[Crossref]
Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144–1146 (2003).
[Crossref]
[PubMed]
C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]
C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867–1869 (2005).
[Crossref]
[PubMed]
R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref]
[PubMed]
D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluidics and Nanofluidics 4, 33–52 (2008).
[Crossref]
[PubMed]
H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express 16, 14015–14023 (2008).
[Crossref]
[PubMed]
H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
[Crossref]
[PubMed]
K. B. Mogensen, Y. C. Kwok, J. C. T. Eijkel, N. J. Petersen, A. Manz, and J. P. Kutter, “A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation,” Anal. Chem. 75, 4931–4936 (2003).
[Crossref]
[PubMed]
K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-chip device manufacture,” Appl. Phys. A 81, 1–10 (2005).
[Crossref]
C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]
V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[Crossref]
R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[Crossref]
K. B. Mogensen, N. J. Petersen, J. Hübner, and J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001).
[Crossref]
[PubMed]
K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25, 3498–3512 (2004).
[Crossref]
[PubMed]
A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High Sensitivity Evanescent Field Fiber Bragg Grating Sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]
R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” Journal of Molecular Recognition 17, 151–161 (2004).
[Crossref]
[PubMed]
R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6, 422–426 (2006).
[Crossref]
[PubMed]
M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9, 311–318 (2009).
[Crossref]
D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluidics and Nanofluidics 4, 33–52 (2008).
[Crossref]
[PubMed]
A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[Crossref]
[PubMed]
D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[Crossref]
S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16, 1623–1631 (2008).
[Crossref]
[PubMed]
Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
[Crossref]
[PubMed]
L. Shah, A. Y. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
[Crossref]
[PubMed]
K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685–8695 (2009).
[Crossref]
[PubMed]
H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express 16, 14015–14023 (2008).
[Crossref]
[PubMed]
H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
[Crossref]
[PubMed]
E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
[Crossref]
[PubMed]
C. Schaffer, A. Brodeur, J. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
[Crossref]
A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279(2001).
[Crossref]
Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144–1146 (2003).
[Crossref]
[PubMed]
C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867–1869 (2005).
[Crossref]
[PubMed]
Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]
[PubMed]
J. C. Gates, C. H. Holmes, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “New geometry for planar UV written refractive index sensors,” Proc. SPIE 6585, 65850O (2007).
[Crossref]
A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[Crossref]
W. W. Morey, G. Meltz, and W. H. Glenn, “Bragg-grating temperature and strain sensors,” in Proceedings of the 6th International Conference on Optical Fiber Sensors (Springer-Verlag, Paris, France, 1989), pp. 526–531.
S. Ho, M. L. Ng, S. M. Eaton, P. R. Herman, and J. S. Aitchison, “Single and Multi-Scan Femtosecond Laser Writing for Selective Chemical Etching of Glass Micro-Channels,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThJ4.
[PubMed]
S. Ho, S. Eaton, M. L. Ng, J. S. Aitchison, and P. R. Herman, University of Toronto, 10 King’s College Road, M5S 3G4 Toronto, Ontario, Canada, are preparing a manuscript to be called “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross-section patternable glass micro-channels.”
V. Maselli, “Femtosecond laser fabrication of optical waveguides and microfluidic channels,” Ph.D. Thesis, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133Milano, Italy (2007).
R. Kashyap, Fiber Bragg gratings (Academic Press, San Diego, CA, 1999).
G. T. A. Kovac, Micromachined Transducers Sourcebook(McGraw Hill, New York, 1998).