J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
[Crossref]
F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref]
[PubMed]
I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).
[Crossref]
J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]
H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992)Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099 (1997).
[Crossref]
H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
[Crossref]
W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
[Crossref]
J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]
J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]
I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).
[Crossref]
F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref]
[PubMed]
F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref]
[PubMed]
H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992)Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099 (1997).
[Crossref]
H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
[Crossref]
F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref]
[PubMed]
H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992)Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099 (1997).
[Crossref]
I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).
[Crossref]
L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, “Optical pulse collapse in defocusing active medium,” JETP Lett. 61, 904 (1995).
J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
[Crossref]
L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, “Optical pulse collapse in defocusing active medium,” JETP Lett. 61, 904 (1995).
H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992)Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099 (1997).
[Crossref]
L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, “Optical pulse collapse in defocusing active medium,” JETP Lett. 61, 904 (1995).
W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
[Crossref]
J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]
J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]
F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref]
[PubMed]
H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992)Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099 (1997).
[Crossref]
H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
[Crossref]
W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
[Crossref]
H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992)Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099 (1997).
[Crossref]
L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, “Optical pulse collapse in defocusing active medium,” JETP Lett. 61, 904 (1995).
J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]
F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref]
[PubMed]
I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).
[Crossref]
J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
[Crossref]
N. Akhmediev, and A. Ankiewicz, eds., Dissipative Solitons, Lecture Notes in Physics, (Springer, 2005) Vol. 661.
N. Akhmediev, and A. Ankiewicz, eds., Dissipative Solitons: From optics to biology and medicine, Lecture Notes in Physics, (Springer, Berlin-Heidelberg, 2008). Vol. 751.
A. E. Siegman, Lasers (University Science Books, 1986).
L. F. Mollenauer, and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press (2006).
A. C. Newell, and J. V. Moloney, Nonlinear Optics (Addison-Wesley Publishing Company, 1992).
A. Hasegawa, and Y. Kodama, Solitons in Optical Communications (Clarendon, 1995).
V. E. Zakharov, and E. S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, 1998).
N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, 2002).