S. Zhang, L. Yin, and N. Fang, “Focusing ultrasound with an acoustic metamaterial network,” Phys. Rev. Lett. 102, 194301 (2009).
[Crossref]
[PubMed]
Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[Crossref]
N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]
Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, and W. W. Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling,” J Phys. D: Appl. Phys. 42, 095408 (2009).
[Crossref]
A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92, 011119 (2008).
[Crossref]
L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[Crossref]
H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Exp. 16, 7181–7188 (2008).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tenability,” Opt. Express 16, 14390–14396 (2008).
[Crossref]
[PubMed]
A. K. Iyera and G. V. Eleftheriades, “A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation,” Appl. Phys. Lett. 92, 261106 (2008).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102(R) (2007).
[Crossref]
F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[Crossref]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782(2006).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006).
[Crossref]
[PubMed]
N. Fang, H. Lee, and C. Sun, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[Crossref]
[PubMed]
F. Elek and G. V. Eleftheriades, “A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction,” New J. Phys. 7, 163 (2005).
[Crossref]
M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Lefthanded metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]
R. A Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102(R) (2007).
[Crossref]
H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Exp. 16, 7181–7188 (2008).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102(R) (2007).
[Crossref]
Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[Crossref]
A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92, 011119 (2008).
[Crossref]
F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[Crossref]
N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]
H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Exp. 16, 7181–7188 (2008).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
C. Caloz and T. Itoh. Electromagnetic Metamaterial: Transmission Line Theory and Microwave Applications, (John Wiley & Sons, 2005).
[Crossref]
D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006).
[Crossref]
[PubMed]
M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Lefthanded metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]
A. K. Iyera and G. V. Eleftheriades, “A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation,” Appl. Phys. Lett. 92, 261106 (2008).
[Crossref]
F. Elek and G. V. Eleftheriades, “A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction,” New J. Phys. 7, 163 (2005).
[Crossref]
F. Elek and G. V. Eleftheriades, “A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction,” New J. Phys. 7, 163 (2005).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
S. Zhang, L. Yin, and N. Fang, “Focusing ultrasound with an acoustic metamaterial network,” Phys. Rev. Lett. 102, 194301 (2009).
[Crossref]
[PubMed]
N. Fang, H. Lee, and C. Sun, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[Crossref]
[PubMed]
L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[Crossref]
L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[Crossref]
M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Lefthanded metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]
L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102(R) (2007).
[Crossref]
C. Caloz and T. Itoh. Electromagnetic Metamaterial: Transmission Line Theory and Microwave Applications, (John Wiley & Sons, 2005).
[Crossref]
A. K. Iyera and G. V. Eleftheriades, “A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation,” Appl. Phys. Lett. 92, 261106 (2008).
[Crossref]
N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]
D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006).
[Crossref]
[PubMed]
M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Lefthanded metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]
M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Lefthanded metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]
N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]
H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Exp. 16, 7181–7188 (2008).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
N. Fang, H. Lee, and C. Sun, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[Crossref]
[PubMed]
W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102(R) (2007).
[Crossref]
Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, and W. W. Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling,” J Phys. D: Appl. Phys. 42, 095408 (2009).
[Crossref]
Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, and W. W. Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling,” J Phys. D: Appl. Phys. 42, 095408 (2009).
[Crossref]
L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[Crossref]
Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, and W. W. Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling,” J Phys. D: Appl. Phys. 42, 095408 (2009).
[Crossref]
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006).
[Crossref]
[PubMed]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[Crossref]
A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92, 011119 (2008).
[Crossref]
N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Exp. 16, 7181–7188 (2008).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102(R) (2007).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Lefthanded metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782(2006).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006).
[Crossref]
[PubMed]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]
R. A Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782(2006).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006).
[Crossref]
[PubMed]
L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[Crossref]
R. A Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[Crossref]
A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92, 011119 (2008).
[Crossref]
N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006).
[Crossref]
[PubMed]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782(2006).
[Crossref]
[PubMed]
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]
R. A Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Lefthanded metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]
D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006).
[Crossref]
[PubMed]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
N. Fang, H. Lee, and C. Sun, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[Crossref]
[PubMed]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Exp. 16, 7181–7188 (2008).
[Crossref]
A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92, 011119 (2008).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102(R) (2007).
[Crossref]
N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]
Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[Crossref]
F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, and W. W. Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling,” J Phys. D: Appl. Phys. 42, 095408 (2009).
[Crossref]
Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, and W. W. Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling,” J Phys. D: Appl. Phys. 42, 095408 (2009).
[Crossref]
S. Zhang, L. Yin, and N. Fang, “Focusing ultrasound with an acoustic metamaterial network,” Phys. Rev. Lett. 102, 194301 (2009).
[Crossref]
[PubMed]
Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, and W. W. Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling,” J Phys. D: Appl. Phys. 42, 095408 (2009).
[Crossref]
S. Zhang, L. Yin, and N. Fang, “Focusing ultrasound with an acoustic metamaterial network,” Phys. Rev. Lett. 102, 194301 (2009).
[Crossref]
[PubMed]
H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Exp. 16, 7181–7188 (2008).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
A. K. Iyera and G. V. Eleftheriades, “A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation,” Appl. Phys. Lett. 92, 261106 (2008).
[Crossref]
A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92, 011119 (2008).
[Crossref]
Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, and W. W. Lin, “The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling,” J Phys. D: Appl. Phys. 42, 095408 (2009).
[Crossref]
M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, “Lefthanded metamaterials: detailed numerical studies of the transmission properties,” J. Opt. A: Pure Appl. Opt. 7, S12–S22 (2005).
[Crossref]
F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006).
[Crossref]
F. Elek and G. V. Eleftheriades, “A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction,” New J. Phys. 7, 163 (2005).
[Crossref]
H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Exp. 16, 7181–7188 (2008).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102(R) (2007).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]
Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[Crossref]
N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]
L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[Crossref]
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
S. Zhang, L. Yin, and N. Fang, “Focusing ultrasound with an acoustic metamaterial network,” Phys. Rev. Lett. 102, 194301 (2009).
[Crossref]
[PubMed]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
N. Fang, H. Lee, and C. Sun, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[Crossref]
[PubMed]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782(2006).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006).
[Crossref]
[PubMed]
R. A Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
C. Caloz and T. Itoh. Electromagnetic Metamaterial: Transmission Line Theory and Microwave Applications, (John Wiley & Sons, 2005).
[Crossref]