F. Dufey, “Optical activity in the Drude helix” Chem. Phys. 330, 326–332 (2006).
[Crossref]
S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, “Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region” J. Appl. Phys. 94, 2325–2330 (2003).
[Crossref]
J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, “Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors,” APL. 81, 2294 (2002).
J. H. Cloete, M. Bingle, and D. B. Davidson, “The role of chirality and resonance in synthetic microwave absorbers,” Int. J. Electron. Commun. 55, 233–239 (2001).
[Crossref]
K. M. Flood and D. L. Jaggard, “Effective charge densities and current densities in isotropic chiral media,” J. Opt. Soc. Am. A 12, 177–183 (1995).
[Crossref]
F. Guerin, P. Bannelier, and M. Labeyrie, “Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories,” J. Phys. D 28, 623–642 (1995).
[Crossref]
F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, “Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment,” J. Phys. D 28, 643–656 (1995).
[Crossref]
V. V. Varadan, R. Ro, and V. K. Varadan, “Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range,” Radio Sci. 29, 9–22 (1994).
[Crossref]
R. Ro, V. V. Varadan, and V. K. Vardan, “Electromagnetic activity and absorption in microwave chiral composites,” IEEE Proc. H 139, 441–448 (1992).
F. C. F. Bohren, R. Luebbers, H. S. Langdon, and F. Hunsberger, “Microwave-absorbing chiral composites: is chirality essential or accidental,” Appl. Opt. 31, 6403–6407 (1992).
[Crossref]
[PubMed]
M. H. Umari, V. V. Varadan, and V. K. Vardan, “Rotation and dichroism associated with microwave propagation in chiral composite samples,” Radio Sci. 26, 1327–1334 (1991).
[Crossref]
I. Tinoco and A. L. Williams, “Differential absorption and differential scattering of circularly polarized light,” Annu. Rev. Phys. Chem. 35, 329–355 (1984).
[Crossref]
I. Tinoco and A. L. Williams, “Differential absorption and differential scattering of circularly polarized light: applications to biological molecules,” Annu. Rev. Phys. Chem. 35, 329–355 (1984).
[Crossref]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. 80, 3568–3572 (1983).
[Crossref]
[PubMed]
M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. Tinoco, “Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa,” Nature 298, 773–774 (1982).
[Crossref]
[PubMed]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light. IV. Randomly oriented species,” J. Chem. Phys. 76, 3440–3446 (1982).
[Crossref]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering,” J. Chem. Phys. 74, 4839–4850 (1981).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73, 4273–4281 (1980).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. II. Applications,” J. Chem. Phys. 73, 6046–6055 (1980).
[Crossref]
D. Moore and I. Tinoco, “The circular dichroism of large helices. A free particle on a helix” J. Chem. Phys. 72, 3396–3700 (1980).
[Crossref]
I. Tinoco, C. C. Bustamante, and M. F. Maestre, “The optical activity of nucleic acids and their aggregates,” Annu. Rev. Biophys. Bioeng. 9, 107–141 (1980).
[Crossref]
[PubMed]
S. F. Mason, “Optical Activity and Molecular Dissymmetry” Contemp. Phys. 9, 239–256, (1968).
[Crossref]
I. Tinoco and R. Woody, “Optical rotation of oriented helices. IV a free electron on a helix,” J. Chem. Phys. 40, 160–165 (1964).
[Crossref]
I. Tinoco and M. P. Freeman, “The optical activity of oriented copper helices. I. Experimental,” J. Phys. Chem. 61,1196–1200(1957).
[Crossref]
M. H. Winkler, “An experimental investigation of some models for optical activity,” J. Phys. Chem. 60, 1656–1659 (1956).
[Crossref]
E. U. Condon, “Theories of optical rotary power” Rev. Mod. Phys. 9, 432–457 (1937)
[Crossref]
K. F. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarization der elektromagnetische Wellen,” Annalen der Physik 63, 621–644 (1920).
[Crossref]
J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted structure,” Proc. R Soc. Lond. A 63, 146–152, (1898).
[Crossref]
L. Pasteur, “Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire,” Ann. Chimie et Physique. 24, 442–459 (1848).
J. B. Biot, “Mémoire sur un nouveau genre d‘oscillation que les molécules de la lumiére éprouvent en traversant certains cristaux” Mém. Sci. Math. Phys. Inst. 1, 1–372 (1812).
D. F. Arago, “Mémoire sur une modification remarquable qu‘éprouvent les rayons lumineux dans leur passage a‘ travers certains corps diaphanes, et sue quelques autres nouveaux phénoménes d‘optique,” Mem. Sci. Math. Phys. Inst. 1, 93–134 (1811).
D. F. Arago, “Mémoire sur une modification remarquable qu‘éprouvent les rayons lumineux dans leur passage a‘ travers certains corps diaphanes, et sue quelques autres nouveaux phénoménes d‘optique,” Mem. Sci. Math. Phys. Inst. 1, 93–134 (1811).
F. Guerin, P. Bannelier, and M. Labeyrie, “Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories,” J. Phys. D 28, 623–642 (1995).
[Crossref]
F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, “Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment,” J. Phys. D 28, 643–656 (1995).
[Crossref]
L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge1982).
J. H. Cloete, M. Bingle, and D. B. Davidson, “The role of chirality and resonance in synthetic microwave absorbers,” Int. J. Electron. Commun. 55, 233–239 (2001).
[Crossref]
J. B. Biot, “Mémoire sur un nouveau genre d‘oscillation que les molécules de la lumiére éprouvent en traversant certains cristaux” Mém. Sci. Math. Phys. Inst. 1, 1–372 (1812).
J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted structure,” Proc. R Soc. Lond. A 63, 146–152, (1898).
[Crossref]
J. H. Brewster, “Helix models for optical activity” in Topics in Stereochemistry, vol. 2,1–72, N. L. Allinger and E. L. Eliel, ed. (John Wiley & Sons, Inc., 1967).
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. 80, 3568–3572 (1983).
[Crossref]
[PubMed]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light. IV. Randomly oriented species,” J. Chem. Phys. 76, 3440–3446 (1982).
[Crossref]
M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. Tinoco, “Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa,” Nature 298, 773–774 (1982).
[Crossref]
[PubMed]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering,” J. Chem. Phys. 74, 4839–4850 (1981).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73, 4273–4281 (1980).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. II. Applications,” J. Chem. Phys. 73, 6046–6055 (1980).
[Crossref]
I. Tinoco, C. C. Bustamante, and M. F. Maestre, “The optical activity of nucleic acids and their aggregates,” Annu. Rev. Biophys. Bioeng. 9, 107–141 (1980).
[Crossref]
[PubMed]
J. H. Cloete, M. Bingle, and D. B. Davidson, “The role of chirality and resonance in synthetic microwave absorbers,” Int. J. Electron. Commun. 55, 233–239 (2001).
[Crossref]
E. U. Condon, “Theories of optical rotary power” Rev. Mod. Phys. 9, 432–457 (1937)
[Crossref]
J. H. Cloete, M. Bingle, and D. B. Davidson, “The role of chirality and resonance in synthetic microwave absorbers,” Int. J. Electron. Commun. 55, 233–239 (2001).
[Crossref]
F. Dufey, “Optical activity in the Drude helix” Chem. Phys. 330, 326–332 (2006).
[Crossref]
J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, “Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors,” APL. 81, 2294 (2002).
G. D. Fasman, Circular dichroism and the conformational analysis of biomolecules (Oxford University Press, Oxford, 1997).
I. Tinoco and M. P. Freeman, “The optical activity of oriented copper helices. I. Experimental,” J. Phys. Chem. 61,1196–1200(1957).
[Crossref]
F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, “Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment,” J. Phys. D 28, 643–656 (1995).
[Crossref]
F. Guerin, P. Bannelier, and M. Labeyrie, “Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories,” J. Phys. D 28, 623–642 (1995).
[Crossref]
F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, “Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment,” J. Phys. D 28, 643–656 (1995).
[Crossref]
F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, “Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment,” J. Phys. D 28, 643–656 (1995).
[Crossref]
M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. Tinoco, “Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa,” Nature 298, 773–774 (1982).
[Crossref]
[PubMed]
S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, “Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region” J. Appl. Phys. 94, 2325–2330 (2003).
[Crossref]
J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, “Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors,” APL. 81, 2294 (2002).
S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, “Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region” J. Appl. Phys. 94, 2325–2330 (2003).
[Crossref]
J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, “Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors,” APL. 81, 2294 (2002).
Mathias Johansson, “The Hilbert transform” Master Thesis, Mathematics, Växjö University (1999).
F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, “Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment,” J. Phys. D 28, 643–656 (1995).
[Crossref]
F. Guerin, P. Bannelier, and M. Labeyrie, “Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories,” J. Phys. D 28, 623–642 (1995).
[Crossref]
I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media. (Artech House, Boston1994).
K. F. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarization der elektromagnetische Wellen,” Annalen der Physik 63, 621–644 (1920).
[Crossref]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. 80, 3568–3572 (1983).
[Crossref]
[PubMed]
M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. Tinoco, “Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa,” Nature 298, 773–774 (1982).
[Crossref]
[PubMed]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light. IV. Randomly oriented species,” J. Chem. Phys. 76, 3440–3446 (1982).
[Crossref]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering,” J. Chem. Phys. 74, 4839–4850 (1981).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. II. Applications,” J. Chem. Phys. 73, 6046–6055 (1980).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73, 4273–4281 (1980).
[Crossref]
I. Tinoco, C. C. Bustamante, and M. F. Maestre, “The optical activity of nucleic acids and their aggregates,” Annu. Rev. Biophys. Bioeng. 9, 107–141 (1980).
[Crossref]
[PubMed]
S. F. Mason, “Optical Activity and Molecular Dissymmetry” Contemp. Phys. 9, 239–256, (1968).
[Crossref]
S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge University Press, Cambridge, 1982).
D. Moore and I. Tinoco, “The circular dichroism of large helices. A free particle on a helix” J. Chem. Phys. 72, 3396–3700 (1980).
[Crossref]
S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, “Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region” J. Appl. Phys. 94, 2325–2330 (2003).
[Crossref]
S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, “Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region” J. Appl. Phys. 94, 2325–2330 (2003).
[Crossref]
L. Pasteur, “Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire,” Ann. Chimie et Physique. 24, 442–459 (1848).
V. V. Varadan, R. Ro, and V. K. Varadan, “Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range,” Radio Sci. 29, 9–22 (1994).
[Crossref]
R. Ro, V. V. Varadan, and V. K. Vardan, “Electromagnetic activity and absorption in microwave chiral composites,” IEEE Proc. H 139, 441–448 (1992).
I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media. (Artech House, Boston1994).
M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. Tinoco, “Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa,” Nature 298, 773–774 (1982).
[Crossref]
[PubMed]
I. Tinoco and A. L. Williams, “Differential absorption and differential scattering of circularly polarized light: applications to biological molecules,” Annu. Rev. Phys. Chem. 35, 329–355 (1984).
[Crossref]
I. Tinoco and A. L. Williams, “Differential absorption and differential scattering of circularly polarized light,” Annu. Rev. Phys. Chem. 35, 329–355 (1984).
[Crossref]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. 80, 3568–3572 (1983).
[Crossref]
[PubMed]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light. IV. Randomly oriented species,” J. Chem. Phys. 76, 3440–3446 (1982).
[Crossref]
M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. Tinoco, “Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa,” Nature 298, 773–774 (1982).
[Crossref]
[PubMed]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering,” J. Chem. Phys. 74, 4839–4850 (1981).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73, 4273–4281 (1980).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. II. Applications,” J. Chem. Phys. 73, 6046–6055 (1980).
[Crossref]
D. Moore and I. Tinoco, “The circular dichroism of large helices. A free particle on a helix” J. Chem. Phys. 72, 3396–3700 (1980).
[Crossref]
I. Tinoco, C. C. Bustamante, and M. F. Maestre, “The optical activity of nucleic acids and their aggregates,” Annu. Rev. Biophys. Bioeng. 9, 107–141 (1980).
[Crossref]
[PubMed]
I. Tinoco and R. Woody, “Optical rotation of oriented helices. IV a free electron on a helix,” J. Chem. Phys. 40, 160–165 (1964).
[Crossref]
I. Tinoco and M. P. Freeman, “The optical activity of oriented copper helices. I. Experimental,” J. Phys. Chem. 61,1196–1200(1957).
[Crossref]
I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media. (Artech House, Boston1994).
M. H. Umari, V. V. Varadan, and V. K. Vardan, “Rotation and dichroism associated with microwave propagation in chiral composite samples,” Radio Sci. 26, 1327–1334 (1991).
[Crossref]
V. V. Varadan, R. Ro, and V. K. Varadan, “Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range,” Radio Sci. 29, 9–22 (1994).
[Crossref]
V. V. Varadan, R. Ro, and V. K. Varadan, “Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range,” Radio Sci. 29, 9–22 (1994).
[Crossref]
R. Ro, V. V. Varadan, and V. K. Vardan, “Electromagnetic activity and absorption in microwave chiral composites,” IEEE Proc. H 139, 441–448 (1992).
M. H. Umari, V. V. Varadan, and V. K. Vardan, “Rotation and dichroism associated with microwave propagation in chiral composite samples,” Radio Sci. 26, 1327–1334 (1991).
[Crossref]
R. Ro, V. V. Varadan, and V. K. Vardan, “Electromagnetic activity and absorption in microwave chiral composites,” IEEE Proc. H 139, 441–448 (1992).
M. H. Umari, V. V. Varadan, and V. K. Vardan, “Rotation and dichroism associated with microwave propagation in chiral composite samples,” Radio Sci. 26, 1327–1334 (1991).
[Crossref]
J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, “Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors,” APL. 81, 2294 (2002).
I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media. (Artech House, Boston1994).
I. Tinoco and A. L. Williams, “Differential absorption and differential scattering of circularly polarized light,” Annu. Rev. Phys. Chem. 35, 329–355 (1984).
[Crossref]
I. Tinoco and A. L. Williams, “Differential absorption and differential scattering of circularly polarized light: applications to biological molecules,” Annu. Rev. Phys. Chem. 35, 329–355 (1984).
[Crossref]
M. H. Winkler, “An experimental investigation of some models for optical activity,” J. Phys. Chem. 60, 1656–1659 (1956).
[Crossref]
I. Tinoco and R. Woody, “Optical rotation of oriented helices. IV a free electron on a helix,” J. Chem. Phys. 40, 160–165 (1964).
[Crossref]
L. Pasteur, “Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire,” Ann. Chimie et Physique. 24, 442–459 (1848).
K. F. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarization der elektromagnetische Wellen,” Annalen der Physik 63, 621–644 (1920).
[Crossref]
I. Tinoco, C. C. Bustamante, and M. F. Maestre, “The optical activity of nucleic acids and their aggregates,” Annu. Rev. Biophys. Bioeng. 9, 107–141 (1980).
[Crossref]
[PubMed]
I. Tinoco and A. L. Williams, “Differential absorption and differential scattering of circularly polarized light,” Annu. Rev. Phys. Chem. 35, 329–355 (1984).
[Crossref]
I. Tinoco and A. L. Williams, “Differential absorption and differential scattering of circularly polarized light: applications to biological molecules,” Annu. Rev. Phys. Chem. 35, 329–355 (1984).
[Crossref]
J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, “Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors,” APL. 81, 2294 (2002).
F. Dufey, “Optical activity in the Drude helix” Chem. Phys. 330, 326–332 (2006).
[Crossref]
S. F. Mason, “Optical Activity and Molecular Dissymmetry” Contemp. Phys. 9, 239–256, (1968).
[Crossref]
R. Ro, V. V. Varadan, and V. K. Vardan, “Electromagnetic activity and absorption in microwave chiral composites,” IEEE Proc. H 139, 441–448 (1992).
J. H. Cloete, M. Bingle, and D. B. Davidson, “The role of chirality and resonance in synthetic microwave absorbers,” Int. J. Electron. Commun. 55, 233–239 (2001).
[Crossref]
S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, “Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region” J. Appl. Phys. 94, 2325–2330 (2003).
[Crossref]
D. Moore and I. Tinoco, “The circular dichroism of large helices. A free particle on a helix” J. Chem. Phys. 72, 3396–3700 (1980).
[Crossref]
I. Tinoco and R. Woody, “Optical rotation of oriented helices. IV a free electron on a helix,” J. Chem. Phys. 40, 160–165 (1964).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73, 4273–4281 (1980).
[Crossref]
C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical structures. II. Applications,” J. Chem. Phys. 73, 6046–6055 (1980).
[Crossref]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering,” J. Chem. Phys. 74, 4839–4850 (1981).
[Crossref]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular intensity differential scattering of light. IV. Randomly oriented species,” J. Chem. Phys. 76, 3440–3446 (1982).
[Crossref]
M. H. Winkler, “An experimental investigation of some models for optical activity,” J. Phys. Chem. 60, 1656–1659 (1956).
[Crossref]
I. Tinoco and M. P. Freeman, “The optical activity of oriented copper helices. I. Experimental,” J. Phys. Chem. 61,1196–1200(1957).
[Crossref]
F. Guerin, P. Bannelier, and M. Labeyrie, “Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories,” J. Phys. D 28, 623–642 (1995).
[Crossref]
F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, “Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment,” J. Phys. D 28, 643–656 (1995).
[Crossref]
D. F. Arago, “Mémoire sur une modification remarquable qu‘éprouvent les rayons lumineux dans leur passage a‘ travers certains corps diaphanes, et sue quelques autres nouveaux phénoménes d‘optique,” Mem. Sci. Math. Phys. Inst. 1, 93–134 (1811).
J. B. Biot, “Mémoire sur un nouveau genre d‘oscillation que les molécules de la lumiére éprouvent en traversant certains cristaux” Mém. Sci. Math. Phys. Inst. 1, 1–372 (1812).
M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. Tinoco, “Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa,” Nature 298, 773–774 (1982).
[Crossref]
[PubMed]
C. Bustamante, I. Tinoco, and M. F. Maestre, “Circular differential scattering can be an important part of the circular dichroism of macromolecules,” Proc. Natl. Acad. Sci. 80, 3568–3572 (1983).
[Crossref]
[PubMed]
J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted structure,” Proc. R Soc. Lond. A 63, 146–152, (1898).
[Crossref]
M. H. Umari, V. V. Varadan, and V. K. Vardan, “Rotation and dichroism associated with microwave propagation in chiral composite samples,” Radio Sci. 26, 1327–1334 (1991).
[Crossref]
V. V. Varadan, R. Ro, and V. K. Varadan, “Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range,” Radio Sci. 29, 9–22 (1994).
[Crossref]
E. U. Condon, “Theories of optical rotary power” Rev. Mod. Phys. 9, 432–457 (1937)
[Crossref]
I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media. (Artech House, Boston1994).
Mathias Johansson, “The Hilbert transform” Master Thesis, Mathematics, Växjö University (1999).
S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge University Press, Cambridge, 1982).
G. D. Fasman, Circular dichroism and the conformational analysis of biomolecules (Oxford University Press, Oxford, 1997).
L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge1982).
J. H. Brewster, “Helix models for optical activity” in Topics in Stereochemistry, vol. 2,1–72, N. L. Allinger and E. L. Eliel, ed. (John Wiley & Sons, Inc., 1967).