T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref]
[PubMed]
J. H. Kim and H. Choi, “Technique for azimuthal anchoring measurement of nematic liquid crystals using magnetic field induced deformation,” Appl. Phys. Lett. 90(10), 101908 (2007).
[Crossref]
S. Faetti, K. Sakamoto, and K. Usami, “Very strong azimuthal anchoring of nematic liquid crystals on uv-aligned polyimide layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 051704 (2007).
[Crossref]
[PubMed]
T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” J. Lightwave Technol. 25(3), 946–951 (2007).
[Crossref]
S. Faetti and P. Marianelli, “Strong azimuthal anchoring energy at a nematic-polyimide interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051708 (2005).
[Crossref]
[PubMed]
G. Barbero, D. Olivero, N. Scaramuzza, G. Strangi, and C. Versace, “Influence of the bias-voltage on the anchoring energy for nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 021713 (2004).
[Crossref]
[PubMed]
S. Faetti and G. C. Mutinati, “Light transmission from a twisted nematic liquid crystal: accurate methods to measure the azimuthal anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 026601 (2003).
[Crossref]
[PubMed]
S. Faetti and G. C. Mutinati, “An improved reflectometric method to measure the azimuthal anchoring energy of nematic liquid crystals,” Eur Phys J E Soft Matter 10(3), 265–279 (2003).
[Crossref]
J. G. Fonseca and Y. Galerne, “Simple method for measuring the azimuthal anchoring strength of nematic liquid crystals,” Appl. Phys. Lett. 79(18), 2910–2912 (2001).
[Crossref]
F. Z. Yang, H. F. Cheng, H. J. Gao, and J. R. Samples, “Determination of the torsional anchoring of a twisted nematic liquid crystal using the half-leaky guided mode technique,” Liq. Cryst. 28(1), 51–57 (2001).
[Crossref]
Y. Zhou, Z. He, and S. Sato, “Generalized relation theory of torque balance method for azimuthal anchoring measurements,” Jpn. J. Appl. Phys. 38(Part 1, No. 8), 4857–4858 (1999).
[Crossref]
Y. Zhou, Z. He, and S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. 36(Part 1, No. 5A), 2760–2764 (1997).
[Crossref]
T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(Part 1, No. 8), 4434–4437 (1996).
[Crossref]
Y. Sato, K. Sato, and T. Uchida, “Relationship between Rubbing Strength and Surface Anchoring of Nematic Liquid Crystal,” Jpn. J. Appl. Phys. 31(Part 2, No. 5A), L579–L581 (1992).
[Crossref]
T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref]
[PubMed]
T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(Part 1, No. 8), 4434–4437 (1996).
[Crossref]
G. Barbero, D. Olivero, N. Scaramuzza, G. Strangi, and C. Versace, “Influence of the bias-voltage on the anchoring energy for nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 021713 (2004).
[Crossref]
[PubMed]
T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref]
[PubMed]
F. Z. Yang, H. F. Cheng, H. J. Gao, and J. R. Samples, “Determination of the torsional anchoring of a twisted nematic liquid crystal using the half-leaky guided mode technique,” Liq. Cryst. 28(1), 51–57 (2001).
[Crossref]
J. H. Kim and H. Choi, “Technique for azimuthal anchoring measurement of nematic liquid crystals using magnetic field induced deformation,” Appl. Phys. Lett. 90(10), 101908 (2007).
[Crossref]
S. Faetti, K. Sakamoto, and K. Usami, “Very strong azimuthal anchoring of nematic liquid crystals on uv-aligned polyimide layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 051704 (2007).
[Crossref]
[PubMed]
S. Faetti and P. Marianelli, “Strong azimuthal anchoring energy at a nematic-polyimide interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051708 (2005).
[Crossref]
[PubMed]
S. Faetti and G. C. Mutinati, “Light transmission from a twisted nematic liquid crystal: accurate methods to measure the azimuthal anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 026601 (2003).
[Crossref]
[PubMed]
S. Faetti and G. C. Mutinati, “An improved reflectometric method to measure the azimuthal anchoring energy of nematic liquid crystals,” Eur Phys J E Soft Matter 10(3), 265–279 (2003).
[Crossref]
J. G. Fonseca and Y. Galerne, “Simple method for measuring the azimuthal anchoring strength of nematic liquid crystals,” Appl. Phys. Lett. 79(18), 2910–2912 (2001).
[Crossref]
J. G. Fonseca and Y. Galerne, “Simple method for measuring the azimuthal anchoring strength of nematic liquid crystals,” Appl. Phys. Lett. 79(18), 2910–2912 (2001).
[Crossref]
F. Z. Yang, H. F. Cheng, H. J. Gao, and J. R. Samples, “Determination of the torsional anchoring of a twisted nematic liquid crystal using the half-leaky guided mode technique,” Liq. Cryst. 28(1), 51–57 (2001).
[Crossref]
T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref]
[PubMed]
Y. Zhou, Z. He, and S. Sato, “Generalized relation theory of torque balance method for azimuthal anchoring measurements,” Jpn. J. Appl. Phys. 38(Part 1, No. 8), 4857–4858 (1999).
[Crossref]
Y. Zhou, Z. He, and S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. 36(Part 1, No. 5A), 2760–2764 (1997).
[Crossref]
T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(Part 1, No. 8), 4434–4437 (1996).
[Crossref]
J. H. Kim and H. Choi, “Technique for azimuthal anchoring measurement of nematic liquid crystals using magnetic field induced deformation,” Appl. Phys. Lett. 90(10), 101908 (2007).
[Crossref]
T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(Part 1, No. 8), 4434–4437 (1996).
[Crossref]
S. S. Lin and Y. D. Lee, “Orientational microgrooves generated by plasma beam irradiation at surface of polymer films to align liquid crystals,” Jpn. J. Appl. Phys. 45(27), 24–28 (2006).
[Crossref]
S. S. Lin and Y. D. Lee, “Orientational microgrooves generated by plasma beam irradiation at surface of polymer films to align liquid crystals,” Jpn. J. Appl. Phys. 45(27), 24–28 (2006).
[Crossref]
W. L. Lin, T. C. Yu, Y. L. Lo, and J. F. Lin, “A hybrid approach for measuring the parameters of twisted-nematic liquid crystal cells utilizing the Stokes parameter method and a genetic algorithm,” J. Lightwave Technol. 27(18), 4136–4144 (2009).
[Crossref]
T. C. Yu and Y. L. Lo, “A two-dimentional heterodyne polarimeter for determination of parameters in twisted nematic liquid crystal cells,” J. Lightwave Technol. 27(23), 5500–5507 (2009).
[Crossref]
T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” J. Lightwave Technol. 25(3), 946–951 (2007).
[Crossref]
Y. L. Lo, H. W. Chih, C. Y. Yeh, and T. C. Yu, “Full-field heterodyne polariscope with an image signal processing method for principal axis and phase retardation measurements,” Appl. Opt. 45(31), 8006–8012 (2006).
[Crossref]
[PubMed]
S. Faetti and P. Marianelli, “Strong azimuthal anchoring energy at a nematic-polyimide interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051708 (2005).
[Crossref]
[PubMed]
S. Faetti and G. C. Mutinati, “An improved reflectometric method to measure the azimuthal anchoring energy of nematic liquid crystals,” Eur Phys J E Soft Matter 10(3), 265–279 (2003).
[Crossref]
S. Faetti and G. C. Mutinati, “Light transmission from a twisted nematic liquid crystal: accurate methods to measure the azimuthal anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 026601 (2003).
[Crossref]
[PubMed]
G. Barbero, D. Olivero, N. Scaramuzza, G. Strangi, and C. Versace, “Influence of the bias-voltage on the anchoring energy for nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 021713 (2004).
[Crossref]
[PubMed]
T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref]
[PubMed]
S. Faetti, K. Sakamoto, and K. Usami, “Very strong azimuthal anchoring of nematic liquid crystals on uv-aligned polyimide layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 051704 (2007).
[Crossref]
[PubMed]
F. Z. Yang, H. F. Cheng, H. J. Gao, and J. R. Samples, “Determination of the torsional anchoring of a twisted nematic liquid crystal using the half-leaky guided mode technique,” Liq. Cryst. 28(1), 51–57 (2001).
[Crossref]
Y. Sato, K. Sato, and T. Uchida, “Relationship between Rubbing Strength and Surface Anchoring of Nematic Liquid Crystal,” Jpn. J. Appl. Phys. 31(Part 2, No. 5A), L579–L581 (1992).
[Crossref]
Y. Zhou, Z. He, and S. Sato, “Generalized relation theory of torque balance method for azimuthal anchoring measurements,” Jpn. J. Appl. Phys. 38(Part 1, No. 8), 4857–4858 (1999).
[Crossref]
Y. Zhou, Z. He, and S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. 36(Part 1, No. 5A), 2760–2764 (1997).
[Crossref]
Y. Sato, K. Sato, and T. Uchida, “Relationship between Rubbing Strength and Surface Anchoring of Nematic Liquid Crystal,” Jpn. J. Appl. Phys. 31(Part 2, No. 5A), L579–L581 (1992).
[Crossref]
G. Barbero, D. Olivero, N. Scaramuzza, G. Strangi, and C. Versace, “Influence of the bias-voltage on the anchoring energy for nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 021713 (2004).
[Crossref]
[PubMed]
G. Barbero, D. Olivero, N. Scaramuzza, G. Strangi, and C. Versace, “Influence of the bias-voltage on the anchoring energy for nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 021713 (2004).
[Crossref]
[PubMed]
Y. Sato, K. Sato, and T. Uchida, “Relationship between Rubbing Strength and Surface Anchoring of Nematic Liquid Crystal,” Jpn. J. Appl. Phys. 31(Part 2, No. 5A), L579–L581 (1992).
[Crossref]
S. Faetti, K. Sakamoto, and K. Usami, “Very strong azimuthal anchoring of nematic liquid crystals on uv-aligned polyimide layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 051704 (2007).
[Crossref]
[PubMed]
G. Barbero, D. Olivero, N. Scaramuzza, G. Strangi, and C. Versace, “Influence of the bias-voltage on the anchoring energy for nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 021713 (2004).
[Crossref]
[PubMed]
F. Z. Yang, H. F. Cheng, H. J. Gao, and J. R. Samples, “Determination of the torsional anchoring of a twisted nematic liquid crystal using the half-leaky guided mode technique,” Liq. Cryst. 28(1), 51–57 (2001).
[Crossref]
W. L. Lin, T. C. Yu, Y. L. Lo, and J. F. Lin, “A hybrid approach for measuring the parameters of twisted-nematic liquid crystal cells utilizing the Stokes parameter method and a genetic algorithm,” J. Lightwave Technol. 27(18), 4136–4144 (2009).
[Crossref]
T. C. Yu and Y. L. Lo, “A two-dimentional heterodyne polarimeter for determination of parameters in twisted nematic liquid crystal cells,” J. Lightwave Technol. 27(23), 5500–5507 (2009).
[Crossref]
T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” J. Lightwave Technol. 25(3), 946–951 (2007).
[Crossref]
Y. L. Lo, H. W. Chih, C. Y. Yeh, and T. C. Yu, “Full-field heterodyne polariscope with an image signal processing method for principal axis and phase retardation measurements,” Appl. Opt. 45(31), 8006–8012 (2006).
[Crossref]
[PubMed]
Y. Zhou, Z. He, and S. Sato, “Generalized relation theory of torque balance method for azimuthal anchoring measurements,” Jpn. J. Appl. Phys. 38(Part 1, No. 8), 4857–4858 (1999).
[Crossref]
Y. Zhou, Z. He, and S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. 36(Part 1, No. 5A), 2760–2764 (1997).
[Crossref]
J. G. Fonseca and Y. Galerne, “Simple method for measuring the azimuthal anchoring strength of nematic liquid crystals,” Appl. Phys. Lett. 79(18), 2910–2912 (2001).
[Crossref]
J. H. Kim and H. Choi, “Technique for azimuthal anchoring measurement of nematic liquid crystals using magnetic field induced deformation,” Appl. Phys. Lett. 90(10), 101908 (2007).
[Crossref]
S. Faetti and G. C. Mutinati, “An improved reflectometric method to measure the azimuthal anchoring energy of nematic liquid crystals,” Eur Phys J E Soft Matter 10(3), 265–279 (2003).
[Crossref]
T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref]
[PubMed]
T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” J. Lightwave Technol. 25(3), 946–951 (2007).
[Crossref]
W. L. Lin, T. C. Yu, Y. L. Lo, and J. F. Lin, “A hybrid approach for measuring the parameters of twisted-nematic liquid crystal cells utilizing the Stokes parameter method and a genetic algorithm,” J. Lightwave Technol. 27(18), 4136–4144 (2009).
[Crossref]
T. C. Yu and Y. L. Lo, “A two-dimentional heterodyne polarimeter for determination of parameters in twisted nematic liquid crystal cells,” J. Lightwave Technol. 27(23), 5500–5507 (2009).
[Crossref]
Y. Sato, K. Sato, and T. Uchida, “Relationship between Rubbing Strength and Surface Anchoring of Nematic Liquid Crystal,” Jpn. J. Appl. Phys. 31(Part 2, No. 5A), L579–L581 (1992).
[Crossref]
S. S. Lin and Y. D. Lee, “Orientational microgrooves generated by plasma beam irradiation at surface of polymer films to align liquid crystals,” Jpn. J. Appl. Phys. 45(27), 24–28 (2006).
[Crossref]
T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 35(Part 1, No. 8), 4434–4437 (1996).
[Crossref]
Y. Zhou, Z. He, and S. Sato, “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. 36(Part 1, No. 5A), 2760–2764 (1997).
[Crossref]
Y. Zhou, Z. He, and S. Sato, “Generalized relation theory of torque balance method for azimuthal anchoring measurements,” Jpn. J. Appl. Phys. 38(Part 1, No. 8), 4857–4858 (1999).
[Crossref]
F. Z. Yang, H. F. Cheng, H. J. Gao, and J. R. Samples, “Determination of the torsional anchoring of a twisted nematic liquid crystal using the half-leaky guided mode technique,” Liq. Cryst. 28(1), 51–57 (2001).
[Crossref]
S. Faetti and P. Marianelli, “Strong azimuthal anchoring energy at a nematic-polyimide interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051708 (2005).
[Crossref]
[PubMed]
S. Faetti and G. C. Mutinati, “Light transmission from a twisted nematic liquid crystal: accurate methods to measure the azimuthal anchoring energy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 026601 (2003).
[Crossref]
[PubMed]
G. Barbero, D. Olivero, N. Scaramuzza, G. Strangi, and C. Versace, “Influence of the bias-voltage on the anchoring energy for nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 021713 (2004).
[Crossref]
[PubMed]
S. Faetti, K. Sakamoto, and K. Usami, “Very strong azimuthal anchoring of nematic liquid crystals on uv-aligned polyimide layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 051704 (2007).
[Crossref]
[PubMed]
P. Yeh, and C. Gu, Optics of liquid crystal displays. New York: John Wiley & Sons, Inc. (1999).